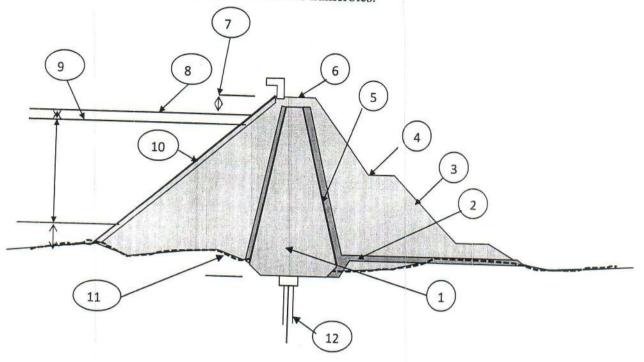

Université de M'sila	Examen:	1ère Année Master Ouvrages
Faculté de Technologie	Barrage I Hydrauliques	Hydrauliques
Département d'Hydraulique		(S2). Durée 1h 30mn
		Documentation non autorisée


(10)

Questions de cours :

- 1- Qu'est-ce qu'un barrage hydraulique ?
 - R1 Barrage: ouvrage hydraulique qui empêchent, sur toute la largeur, une section d'une vallée et qui créent ainsi une dépression topographique artificielle étanche à l'eau.
- 2- Quels sont les conditions auxquelles un site de barrage doit répondre pour qu'un barrage voute soit envisageable ? 1
 - R2 Le barrage -voute peut être envisage si la géologie et l'intégration des ouvrages annexes le permettent dans les vallées étroite en forme V et U; si la largeur est presque constant de sur tout la hauteur de vallée un barrage-voûte cylindrique peut être envisage.
- 3- La détermination de la capacité de la retenue passe par le calcul des différents volumes qui la caractérisent. Citer ces différentes tranches de volumes (illustrer votre réponse par un schéma)? 3

- 4- La figure ci-dessous représente la coupe transversale d'un barrage : 5
 - Quel type de barrage s'agit-il?
 - Donner la dénomination et le rôle des éléments numérotés.

N°	Eléments	Rôle	
1	Noyau	Stoppe l'eau	
2	Filtre drain	Canalise les eaux de percolation du remblai en un au pulser points précis a l'avale pour mesurele débite de fuite, et aussi minimise la pression interstitielle dans le massif de barrage.	
5	Drain horizontal		
	Recharge Aval	assure la stabilité de barrage	
4	Risberme	Une risberme est soit un ouvrage de consolidation d'un talus et la facilité des travaux de réalisation	
5	Crête	La consolidation de digue et assure le passage entre deux berge	
7	Revanche	Intervalle de sécurité au débordement des eaux de barrage	
3	PHE (plus haute eaux)	Informations de gestion et d'auscultèrent	
)	NNR (Retenir normale)	Informations de gestion et d'auscultèrent	
0	Enrochement de protection	Protection des talus	

11	Terrent Natural	
12	Ecran injection	le rôle d'Écran injection est pour augmenter la trajectoire des lignes de courant pour assurer la stabilité au renversement

Exercice 01 (05 points)

1. Calcule la revanche d'une digue en utilisant les données suivantes :

la longueur du Fetch est de 0.55 Km et la vitesse du vent est de 7.7 km/h, en déduire alors la côte de la crête du barrage si la côte du niveau normale de retenue est égale 55.5 m, la charge déversant est de 1.5 m et tassement total estimé à 0.5 m et une accélération de la pesanteur g = 9.81 m/s2.

- 2. Déterminer la largeur de la crête selon KNAPPEN et PREECE et par la formule SIMPLIFEE ?
- Déterminer par la méthode T V A, l'épaisseur du revêtement d'enrochement afin de protéger le talus amont de fruit m1 =1.75. Sachant que le poids volumique de la pierre γp=2.80 KN/m3.

EXR 1

1. Calculer la revanche:

La revanche est donnée par la formule de DAVIS :

R=0,75H_V+
$$\frac{V^2}{2.g}$$

Formule Simplifiée

$$R = 1 + 0.3 \sqrt{F}$$

1-Formule de STEVENSON GAILLARD :

$$Hv = 0.75 + 0.34 \sqrt{F} - 0.26 \sqrt[4]{F}$$
 (F< 18 Km)

Hv =0.778

2- Formule de MALLET et PAQUANT :

 $Hv = 0.5 + 0.33 \sqrt{F}$

Hv =0.745 m

Formule Simplifiée

Donc R par la formule de DAVIS sera égale a 0.82 m et Republish et Formule Simplifiée égale 1.22 m

- déduire alors la côte de la crête
- Pour R1 côte de crête =55.5+1.5+0.5+0.82=
- Pour R2 côte de crête =55.5+1.5+0.5+1.01=
- Pour R3 côte de crête =55.5+1.5+0.5+1.22=

2. Déterminer la largeur de la crête selon KNAPPEN et PREECE et par la formule SIMPLIFEE

selon KNAPPEN

Formule de CNAPPEN : b_{cr} = 1.65 \sqrt{Hb} \Rightarrow

Selon PREECE

Formule de PRECCE : $b_{cr} = 1.1 \sqrt{Hb} + 1 \Rightarrow$

Selon la formule SIMPLIFEE

Formule SIMPLIFEE: $b_{cr} = 3.6 \sqrt[3]{Hb} - 3 \Rightarrow 0.0000$

3. Détermination par la méthode T V A, l'épaisseur du revêtement

 $e = CV^2$

v=2.14m/s

C = 0.028

Donc

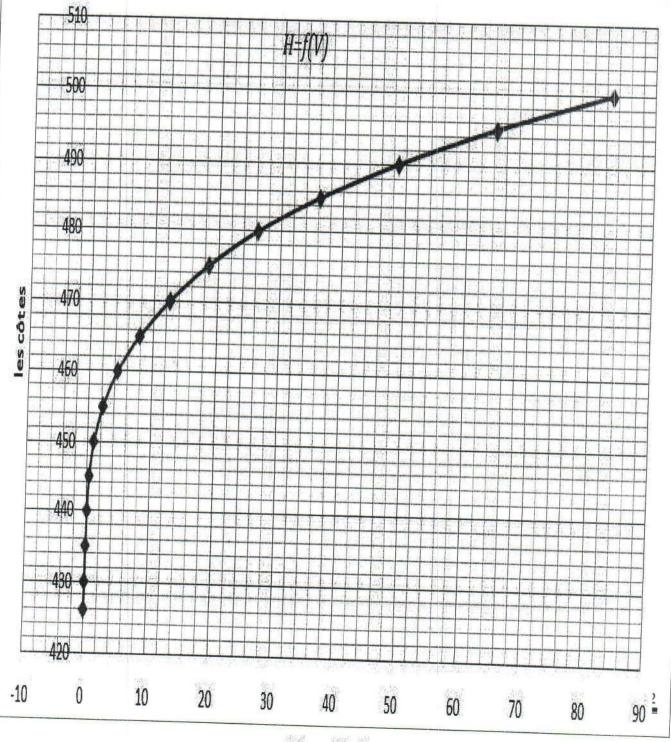
 $e = 0.028 * 2.14^2 = 1.14^2$

Exercice 02:

Voici quelques caractéristiques d'un barrage : On demande :

-Niveau de la crête=500 m. -Hauteur du barrage :500-435=

-Revanche=2 m. -NPHE :500-2=


-NNR :500-2-2=

-NNR :500-2-2=

-Volume mort = 6 Mm³; -Volume forcé :76-68=

-Volume utile :

-Courbe hauteur - capacité, H=f(V).

