

Université Constantine1 Faculté des Sciences de l'Ingénieur Département d'Electronique

Concours d'accès au Doctorat 3ième Cycle en Electronique

Options: 1. Hyperfréquences et Télécommunication – 2. Micro et nanotechnologies – 3. Systèmes, procédés et dispositifs pour l'électronique médicales

Epreuve commune, Durée : 1H 30mn

On soignera la présentation de la copie et tout résultat sera justifié par un calcul. La calculatrice non programmable est autorisée.

Le candidat choisira deux exercices parmi les trois proposés.

Exercice 1 (10 points)

On considère une diode à jonction P^+N abrupte, dopée avec N_A atomes accepteurs côté P et N_D atomes donneurs côté N. Soient $(-x_1)$ et (x_2) les abscisses respectives de la zone de charge d'espace côté P et côté N.

En appliquant à la diode une tension inverse continue de valeur absolue U et en notant U_0 la barrière de diffusion qui s'établit à l'équilibre sans polarisation :

- 1- Donner sans démonstration, l'épaisseur de la zone de charge d'espace notée d, en fonction de U et U₀, en tenant compte de l'hypothèse de la jonction P⁺N. Faire l'application numérique pour U= 4 V.
- 2- Calculer la charge totale +Q stockée dans la zone de charge d'espace côté N en fonction de N_D, U, et U₀.
- 3- En supposant maintenant que la tension inverse varie avec une amplitude u autour d'une valeur constante U_P (U=U_P ± u), calculer l'expression de la capacité différentielle C= dQ/dU pour U=U_P. Retrouver la relation connue entre C et d.
- 4- En supposant que nous faisons des mesures capacité-tension C(U) et en se basant sur le résultat de la capacité différentielle (troisième question), donner un moyen d'obtenir le dopage N_D (lorsqu'il est inconnu) à partir d'un tracé simple.

<u>Données</u>: $\varepsilon o \varepsilon r = 10^{-12}$ F/cm, $n_i = 10^{10}$ cm⁻³, $N_A = 10^{17}$ cm⁻³, $N_D = 2.10^{15}$ cm⁻³, kT/q à la température ambiante est égal à 0.025 Volt.

Exercice 2 (10 points)

Un transistor PNP est dopé avec N_{AE} =10¹⁸ cm⁻³, N_{DB} =10¹⁵ cm⁻³, N_{AC} =10¹⁶cm⁻³ pour les régions émetteur (E), base (B) et collecteur (C), respectivement. La largeur réelle de la base est W = 4 µm. La densité des porteurs intrinsèques est n_i = 10¹⁰ cm⁻³, sosr = 10⁻¹² F/cm et kT/q à la température ambiante est égal à 0.025 Volt.

- 1- Calculer les tensions de diffusion des jonctions E-B et C-B notées V_{DEB} et V_{DCB}.
- 2- Le transistor est polarisé par les tensions V_{EB} = 0.5 V et V_{CB} = -2 V. Calculer la largeur effective de la base, notée W_{Beff}. Pour le calcul des zones de charge d'espace, côté jonction E-B et côté jonction C-B, on suppose que les deux épaisseurs des zones de charge d'espace dans l'émetteur et dans le collecteur sont négligeables (on applique l'hypothèse de la jonction P⁺N).