# الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

متوسطة حواش عبد القادر التاريـــخ:2016/12/06

مديرية التربية لولاية تيارت المستوى: الرابعة المتوسط

اختبار الاول في مادة: الرياضات المدة: ساعتان

## الجزء الأول: (12 نقطة)

# التمرين الأول: (03 نقطة)

 $\frac{637}{468}$  الكسر القاسم المشترك الأكبر للعددين 468 و 637 ، ثم اختزل الكسر  $\frac{637}{468}$ .

$$E = (3\sqrt{2} + 4)(3\sqrt{2} - 4)$$
 و  $E = \sqrt{637} + 3\sqrt{468} - 8\sqrt{117}$  : بسط کلا من  $E = \sqrt{637} + 3\sqrt{468} - 8\sqrt{117}$ 

. اجعل مقام النسبة  $\frac{\sqrt{13}+2}{\sqrt{13}}$  عددا ناطقا (3

## التمرين الثاني: (03 نقاط)

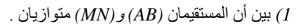
 $N = (2x-3)^2 + (4x-5)(x+3)$  : خيث  $N = (2x-3)^2 + (4x-5)(x+3)$ 

N أنشر ثم بسط العبارة الجبرية N

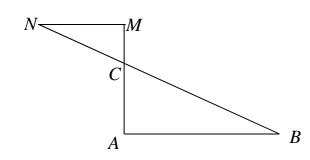
. 
$$x=\sqrt{2}$$
 و  $x=\frac{1}{3}$  من أجل (2

$$N = 26 - 5x$$
 حل المعادلة (3

## التمرين الثالث: (03 نقاط)


. Sin  $A\hat{C}B=rac{\sqrt{5}}{5}$  و  $AB=2\sqrt{5}cm$  عثلث قائم في A حيث ABC

- $AC \cdot BC$  أحسب الطولين (1
- 2) احسب مساحة المثلث ABC.


### التمرين الرابع: (03 نقاط)

 $CM=2.4\ cm\ BC=13\ cm\ ;\ AB=5cm$  : الشكل المقابل غير مرسوم بالأبعاد الحقيقية حيث

 $AC = 12 \ cm \ ; \ CN = 2.6 \ cm$ 



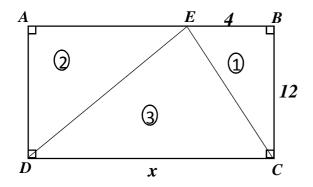
- $C\hat{A}B = 90$  بين أن: (2
  - 3) احسب الطول MN



### الجزء الثاني: (08 نقاط)

## المسألة:

الشكل المقابل يمثل رسم تخطيطي لقطعة أرض مهيأة لبناء مكتبة بمتوسطة كارمان الجديدة حيث:


DC = x m و BC = 12 m القطعة ABCD مستطيلة الشكل بعداها

وهي مقسمة كما يلي:

الجزء EBC: 1 قاعة لوضع الكتب.

الجزء 2: AED قاعة اعلام الي.

الجزء 3: EDC قاعة مطالعة.



#### الجزء الأولى:

- ا أحسب الطول EC، ثم بسطه.
- EBC أحسب  $S_1$  مساحة المثلث القائم (2
- احسب  $\hat{Sin} E \hat{C} B$  ، ثم استنتج قيس الزاوية  $\hat{C} B$  بالمدور الى الوحدة من الدرجة .

#### الجزء الثاني:

- ADE عبر بدلالة x عن  $S_2$  عن x عبر بدلالة
- EDC عبر بدلالة x عن  $S_3$  مساحة المثلث (2
- عبر بدلالة x عن S مساحة المكتبة بطريقتين مختلفتين.
- لوجد قيمة  $\chi$  حتى تكون $S_2$  مساحة قاعة الاعلام الالي تساوي ثلث  $S_2$  مساحة المكتبة.

| ع.ج    | التصحيح النموذجي                                                                  | ع.ج   | التصحيح النموذجي                                                                                                                                |
|--------|-----------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| ٠.٠    | التمرين الثالث: (03 نقاط)                                                         | ٠.٠   | التمرين الأول: (03 نقاط)                                                                                                                        |
|        | $C_{h}$ AC ، BC أحسب الطولين $(1)$                                                | 0,5   | PGCD(468; 637) حساب (1                                                                                                                          |
|        | بما أن: المثلث ABC قائم في A                                                      |       | $637 = 468 \times 1 + 169$                                                                                                                      |
|        | $Sin A\hat{C}B = \frac{AB}{BC}$ فإن:                                              |       | $468 = 169 \times 2 + 130$<br>$169 = 130 \times 1 + 39$                                                                                         |
|        | 1 1                                                                               |       | $130 = 39 \times 3 + 13$                                                                                                                        |
|        | $\frac{\sqrt{5}}{5} = \frac{2\sqrt{5}}{BC}$                                       |       | $39 = 13 \times 3 + 0$                                                                                                                          |
| 01)    | $BC = \frac{5 \times 2\sqrt{5}}{\sqrt{5}}$                                        |       | $PGCD(468;637) = 13$ : $\frac{1}{27}$                                                                                                           |
|        | $BC = 10 \ cm$ اذن:                                                               |       | الاختزال الكسر <del>637</del><br>468                                                                                                            |
|        | 2) حساب الطول AC                                                                  |       | $\frac{637}{468} = \frac{637 \div 13}{468 \div 13} = \frac{49}{36}$                                                                             |
|        | بما أن: المثلث ABC قائم في A                                                      |       | 2) تبسيط العبارتين F و E و 468 468 (2)                                                                                                          |
|        | فإن: $AC^2 + AB^2 = BC^2$ (حسب نظریة فیتاغورث)                                    |       | $E = \sqrt{637} + 3\sqrt{468} - 8\sqrt{117}$                                                                                                    |
| 1 25   | $AC^2 = BC^2 - AB^2$                                                              |       | $E = \sqrt{49 \times 13} + 3\sqrt{36 \times 13} - 8\sqrt{9 \times 13}$                                                                          |
| 1,23   | $AC^2 = 80$ أي: $AC^2 = 100 - 20$                                                 | 01)   | $E = 7\sqrt{13} + 18\sqrt{13} - 24\sqrt{13}$                                                                                                    |
|        | $AC = \sqrt{80} = 4\sqrt{5}$ معناه: $\overline{A}$                                |       | $E = \sqrt{13}$ اذن:                                                                                                                            |
|        | او: $4\sqrt{5} = -\sqrt{80} = -4\sqrt{5}$ حل مرفوض)                               |       | $F = (3\sqrt{2} + 4)(3\sqrt{2} - 4)$ لاينا:                                                                                                     |
|        | $AC = 4\sqrt{5}cm$ إذن: $ABC$ مساحة المثلث $ABC$                                  | 0.5   | $F = (3\sqrt{2})^2 - 4^2 = 9 \times 2 - 16 = 18 - 16$<br>F = 2 اِذْن:                                                                           |
|        | $AB \times AC = 2\sqrt{5} \times 4\sqrt{5}$                                       |       |                                                                                                                                                 |
| (0,75) | $S = \frac{AB \times AC}{2} = \frac{2\sqrt{5} \times 4\sqrt{5}}{2}$               |       | (3) جعل مقام النسبة $\frac{\sqrt{13}+2}{\sqrt{13}}$ عددا ناطقا                                                                                  |
|        | $=20 cm^2$                                                                        | (0,5) | $\frac{\sqrt{13} + 2}{\sqrt{13}} = \frac{\left(\sqrt{13} + 2\right) \times \sqrt{13}}{\sqrt{13} \times \sqrt{13}} = \frac{13 + 2\sqrt{13}}{13}$ |
|        | التمرين الرابع: (03 نقاط)                                                         |       | $\sqrt{13}$ $\sqrt{13} \times \sqrt{13}$ 13                                                                                                     |
|        | ابین أن المستقیمان $(AB)$ و $(MN)$ متوازیان $(AB)$ $(AB)$ $(AB)$                  |       | التمرين الثاني: (03 نقاط)                                                                                                                       |
|        | $\frac{CM}{CA}$ و $\frac{CN}{CB}$                                                 |       | 1) نشر و تبسيط العبارة N حيث:                                                                                                                   |
| 01     | $\frac{CM}{CA} = \frac{2,4}{12} = 0,2$ : $\frac{CN}{CB} = \frac{2,6}{13} = 0,2$   |       | $N = (2x - 3)^2 + (4x - 5)(x + 3)$                                                                                                              |
|        |                                                                                   | (01)  | $N = 4x^2 - 12x + 9 + 4x^2 + 12x - 5x - 15$<br>$N = 8x^2 - 5x - 6$                                                                              |
|        | $\frac{CN}{CB} = \frac{CM}{CA} = 0,2$ نلاحظ أن:                                   |       | $x = \sqrt{2}$ من أجل $N$ حساب العبارة $N$ من أجل (2)                                                                                           |
|        | النقط N ، C ، B و النقط M ، C ، A بنفس الترتيب                                    |       | $N = 8x^2 - 5x - 6$ : لاينا                                                                                                                     |
|        | اذن: (AB) //(MN) (حسب النظرية العكسية لطالس)                                      |       | $N = 8(\sqrt{2})^2 - 5\sqrt{2} - 6$                                                                                                             |
|        | $\widehat{CAB} = 90$ أبين أن: $\widehat{CAB} = 90$                                |       | $N = 8 \times 2 - 5\sqrt{2} - 6$                                                                                                                |
|        | $ABC$ يكفي إثبات أن المثلث $C\hat{A}B=90$ يكفي اثبات أن المثلث                    | 0,5   | 4                                                                                                                                               |
|        | قائم $AB^2+AC^2$ و $BC^2+AC^2$                                                    |       | $x=rac{1}{3}$ حساب العبارة $N$ من أجل                                                                                                          |
| (01)   | $AB^2 + AC^2 = 12^2 + 5^2 = 169$                                                  |       | $N = 8x^2 - 5x - 6$                                                                                                                             |
|        |                                                                                   | (05)  | $N = 8\left(\frac{1}{3}\right)^2 - 5\left(\frac{1}{3}\right) - 6$                                                                               |
|        | $BC^2 = AB^2 + AC^2 = 169$ نلاحظ أن:                                              | 0,5   | $N = \frac{8}{-} - \frac{5}{-} - 6 = \frac{8}{-} - \frac{15}{-} - \frac{54}{-}$                                                                 |
|        | إذن: المثلث $ABC$ قائم في $A$ (حسب العكسية لفيتاغورث)                             |       | $N = \frac{8}{9} - \frac{5}{3} - 6 = \frac{8}{9} - \frac{15}{9} - \frac{54}{9}$ $= \frac{8 - 69}{9}$                                            |
|        | 3) احسب الطول MN                                                                  | 01    |                                                                                                                                                 |
|        | $C \in (MA)$ ؛ $C \in (NB)$ و $(MN)//(AB)$ ؛ $(AB)$                               |       | $N = -rac{61}{9}$ اذن:                                                                                                                         |
| 01)    | فإن: $\frac{NM}{AB} = \frac{CN}{CB} = \frac{CM}{CA}$ فإن:                         |       | N=26-5x حل المعادلة (3                                                                                                                          |
| (UI)   | $\frac{MN}{5} = \frac{2.6}{13} = \frac{2.4}{12}$ بالتعویض:                        |       | N = 26 - 5x دينا: $N = 26 - 5x$                                                                                                                 |
|        |                                                                                   |       | $8x^2 - 5x - 6 = 26 - 5x$<br>$x^2 = \frac{26+6}{3} = 4$ : ومنه: $8x^2 = 26+6$                                                                   |
|        | $MN = \frac{5 \times 2.6}{13} = 1$ و منه : $\frac{MN}{5} = \frac{2.6}{13}$ لدينا: |       | $x^{2} = \frac{1}{8} = 4$ و مله $x^{2} = 20 + 6$ و مله $x^{2} = 4$                                                                              |
|        | MN = 1cm                                                                          |       | $\mathbf{x} = \mathbf{x}$                                                                                                                       |

|       |                                                                         |       | $x = \sqrt{4} = 2$ أو: $x = \sqrt{4} = 2$ للمعادلة حلين متعاكسين هما : 2- و 2                                           |
|-------|-------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------|
|       | $S = S_1 + S_2 + S_3$ It is $S = S_1 + S_2 + S_3$                       |       | المسئلة: (08 نقاط)                                                                                                      |
| (0,5) | S = 24 + 6x - 24 + 6x                                                   |       | الجزء الأولى:                                                                                                           |
|       | $S = 12x cm^2$                                                          |       | 1) حساب الطول EC، ثم تبسيطه                                                                                             |
|       | ا أوجد قيمة $\chi$ حتى تكون $arsigma_2$ مساحة قاعة الاعلام الالي $\chi$ | 1,25  | B بما أن : المثلث $EBC$ قائم في                                                                                         |
|       | تساوي ثلث 5 مساحة المكتبة.                                              |       | $EC^2 = EB^2 + BC^2$ (حسب نظرية فيتاغورث)                                                                               |
|       | $6x - 24 = \frac{1}{3} \times 12x$ معناه: $S_2 = \frac{1}{3}S$          |       |                                                                                                                         |
| 01    | 6x - 24 = 4x                                                            |       | $EC = \sqrt{160} = 4\sqrt{10}$ معناه: $EC^2 = 160$                                                                      |
|       | 6x - 4x = 24 ومنه:                                                      |       | (حل مرفوض) $EC = -\sqrt{160} = -4\sqrt{10}$                                                                             |
|       | 2x = 24 ومنه:                                                           |       | $EC = 4\sqrt{10}$ (ذن:                                                                                                  |
|       | x = 12 cm أي:                                                           |       | 2) حسب S <sub>1</sub> مساحة المثلث القائم EBC.                                                                          |
|       |                                                                         |       | , , ,                                                                                                                   |
|       | تنظيم الورقة:                                                           | (0,5) | $S_1 = \frac{EB \times BC}{2} = \frac{4 \times 12}{2} = \frac{48}{2} = 24$                                              |
|       | ·                                                                       |       | $S_1 = 24 \ cm^2$                                                                                                       |
|       | - مقروئية الكتابة<br>النتائب في الما                                    |       | Sin $\widehat{ECB}$ حساب (3                                                                                             |
| (01)  | - النتا ئج في إطار<br>- احترام الوحدات                                  | 0,75  | بما أن : المثلث EBC قائم في B<br>                                                                                       |
|       | <ul> <li>الورقة بدون تشطيب</li> </ul>                                   | 0,73  | $\sin E\hat{C}B = \frac{EB}{EC} = \frac{4}{4\sqrt{10}} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}$ فإن:               |
|       |                                                                         |       | $\operatorname{Sin} E\widehat{C}B = rac{\sqrt{10}}{10}$ إذن:                                                           |
|       |                                                                         |       | $E\widehat{C}B$ استنتاج قیس الزاویة                                                                                     |
|       |                                                                         |       | $\operatorname{Sin} E\widehat{m{C}} B = rac{\sqrt{10}}{10}$ لاينا:                                                     |
|       |                                                                         |       | $10 \sqrt{} \div 10 = 2ndf \sin 18,4$                                                                                   |
|       |                                                                         | (0,5) | $E\widehat{C}B=18^\circ$ إذن:                                                                                           |
|       |                                                                         |       | الجزء الثانى:                                                                                                           |
|       |                                                                         |       | $ADE$ أعبر بدلالة $x$ عن $S_2$ مساحة المثلث أعبر بدلالة أعبر بدلالة أعبر بدلالة أعبر أعبر أعبر أعبر أعبر أعبر أعبر أعبر |
|       |                                                                         | 01)   | $S_2 = \frac{12 \times (x-4)}{2} = 6(x-4) = 6x - 24$                                                                    |
|       |                                                                         |       | $S_2 = (6x - 24)cm^2$                                                                                                   |
|       |                                                                         |       | عبر بدلالة $\chi$ عن $S_3$ مساحة المثلث $EDC$ .                                                                         |
|       |                                                                         |       | $S_3 = \frac{DC \times BC}{2} = \frac{x \times 12}{2} = 6x$                                                             |
|       |                                                                         | 01)   |                                                                                                                         |
|       |                                                                         |       | $S_3 = 6x \ cm^2$                                                                                                       |
|       |                                                                         |       | عبر بدلالة $\chi$ عن $S$ مساحة المكتبة بطريقتين $\chi$                                                                  |
|       |                                                                         | 0,5   | مختلفتين.                                                                                                               |
|       |                                                                         |       | $S = DC \times BC = x \times 12 = 12x$ الطريقة الأولى:                                                                  |
|       |                                                                         |       | $S = 12x \ cm^2$                                                                                                        |
| 1     |                                                                         | l     | 1                                                                                                                       |