

Université de Béjaïa *Méthodes de Monte-Carlo*

Master1 PSA: 2019-2020

Série de TD Numéro: 0

Exercice 1. (Loi de Cauchy) On rappelle que X suit une loi de Cauchy standard si elle a pour densité :

 $f(x) = \frac{1}{\pi(1+x^2)}$

- 1. Grâce à la méthode d'inversion, donner un moyen simple de simuler une telle loi.
- 2. Donner l'algorithme de simulation de cette loi.
- 3. Donner le programme Matlab de simulation de cette loi.

Exercice 2. Soit X une variable aléatoire réelle de fonction de répartition F :

$$F(x) = \begin{cases} 0 & \text{si } x > 0\\ \frac{1}{2}x & \text{si } 0 \le x < \frac{1}{2}\\ \frac{3}{2}x - \frac{1}{2} & \text{si } \frac{1}{2} \le x < 1\\ 1 & \text{si } x \ge 1 \end{cases}$$

- 1. Calculer le pseudo-inverse de F.
- 2. Proposer une méthode de simulation à X.
- 3. Donner le programme matlab associé à cette méthode.

Exercice 3. Soient x_m et α deux réels strictement positifs. Déterminer la densité de la variable :

$$X = \frac{x_m}{H^{\alpha^{-1}}}$$

où U suit une loi uniforme sur [0,1]. On dit que X suit une loi de Pareto de paramètres (x_m,α) .

Exercice 4. Pour tout $x \in \mathbb{R}$ on définit la densité f par :

$$f(x) = \frac{\sqrt{2}}{\pi} e^{-(\frac{x^2}{2})} 1_{x>0}$$

1. Pour $\alpha > 0$ fixé, trouver une constante $m_{\alpha} > 1$ telle que :

$$f(x) \le m_{\alpha}e^{-\alpha x}$$

- 2. En déduire une méthode de simulation de la loi de densité f.
- 3. Trouver lpha qui minimise le temps moyen de calcul dans la méthode proposée pour simuler f

Exercice 5. Soient

$$f(x) = \frac{1}{T}e^{-x^4}\mathbb{1}_{x\geq 0}$$

$$g(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}\mathbb{1}_{x\geq 0}$$
, $\sigma>0$

$$h(x) = \lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}, \qquad \lambda > 0$$

avec $T = \int_0^{+\infty} e^{-x^4} dx$.

- 1. Trouver une constante m telle que $m \times g$ soit une densité.
- 2. Trouver une constante $m_1 > 1$ telle que :

$$f(x)/mg(x) \leq m_1$$
.

- 3. Trouver σ minimisant la probabilité de rejet. Dans la suite, on prendera $\sigma = \frac{1}{\sqrt{2}}$
- 4. Trouver une constante $m_2 > 1$ telle que :

$$mg(x)/h(x) \leq m_2$$
.

- 5. Trouver λ minimisant la probabilité de rejet.
- 6. Proposer deux méthodes différentes de simulation de mg et donner le programme d'une des deux méthodes.
- 7. On veut mettre en place une méthode de rejet pour simuler la loi de densité f en utilisant la densité mg ou la densité h. Laquelle vaut-il mieux choisir? Donner l'algorithme de cette méthode.

Exercice 6. Supposons que l'on veuille simuler la loi normale $\mathcal{N}(0,1)$ en utilisant comme proposition une loi de Laplace de paramètre $\lambda > 0$, c'est-à-dire de densité :

$$g(x) = \frac{\lambda}{2}e^{-\lambda|x|}.$$

- 1. Déterminer la valeur de λ qui permet de minimiser la probabilité de rejet.
- 2. Proposer une méthode de simulation de la loi normale $\mathcal{N}(0,1)$ basée sur la méthode de rejet et écrire le programme associé a cette dernière.

Simulation des loi conditionnelles.

Supposons que l'on veuille simuler un couple aléatoire (X,Y). Si les deux variables sont indépendantes, il suffit de simuler X et Y indépendamment. Dans le cas contraire, si X est facilement simulable et si la loi de Y sachant X l'est aussi : il suffit de simuler X selon L(X) puis Y selon la loi conditionnelle L(Y|X=x). Dans le cas de variables à densité, ceci est tout simplement basé sur le fait que f(X,Y) = f(X)f(Y|X).

Exercice 7. Soit le couple de v.a (X, Y) de densité :

$$f(x, y) = yx^{y-1}e^{-y}1_{y>0}1_{0< x<1}.$$

- 1. Quelle est la loi de Y?
- 2. Déduire la loi de X sachant Y = y, puis $P(X \le x | Y = y)$.
- 3. Proposer une méthode de simulation du couple (X, Y).

Exercice 8. On considère le couple (X, Y) de densité :

$$f(x,y) = \frac{1}{\sqrt{8\pi}} e^{-\frac{y^2x}{2}} e^{-\sqrt{x}} 1_{x>0}.$$

- 1. Quelle est la loi de Y sachant X = x?
- 2. Quelle est la loi de \sqrt{x} ?
- 3. En déduire une méthode de simulation du couple (X, Y).