Université A.MIR-BEJAIA

Faculté des Sciences exactes

Département de Mathématiques

Laboratoire de Mathématiques appliquées

Cours: Variables aléatoires banachiques

H.Tabti

Chapter 1

Notions fondamentales de probabilités

1.1 Préliminaires

Définition 1.1. Un espace de probabilité est un triplet $(\Omega, \mathcal{A}, \mathbb{P})$ constitué d'un ensemble Ω (appelé espace des epreuves) et d'une mesure positive $\mathbb{P} : \mathcal{A} \to [0, 1]$ de masse totale 1 (appelée probabili \hat{e}).

Définition 1.2. On dit qu'une tribu \mathcal{A} est complète pour \mathbb{P} si B est négligeable alors $B \in \mathcal{A}$.

Pour la suite de cette section, on suppose que la tribu $\mathcal A$ est complète.

Définition 1.3. une variable alátoire réelle sur $(\Omega, \mathcal{A}, \mathbb{P})$ est application $X : \omega \to \mathbb{R}$ qui est mesurable pour la tribu \mathcal{A} et la tribu borelienne $\mathcal{B}or$ de \mathbb{R} .

Définition 1.4. On appelle loi de probabilité, par fois appelée distribution, de X la mesure image $\mathbb{P}_X = X(\mathbb{P})$, c'est la probabilité $\operatorname{sur}(\mathbb{R}, \mathcal{B}or)$ définie par:

$$\mathbb{P}_X(B) = X(\mathbb{P}(B))$$

Définition 1.5. soit X une variable aléatoire integrable, l'intégrale

$$\mathbb{E}(X) = \int_{\Omega} X(\omega) d(\omega) = \int_{\mathbb{R}} x d\mathbb{P}_X(x)$$

est dite l'espérance de X.

On dit que la variable X est centrée lorsque $\mathbb{E}(X) = 0$.

Définition 1.6. Lorsque X est deux fois intégrable, on définit sa variance par

$$V(X) = \mathbb{E}\left[(X - \mathbb{E}(X))^2 \right]$$

Définition 1.7. L'indicatrice \mathbb{I}_A d'un évènement A est une fonction sur Ω dans le doubleton 0, 1 définie par :

$$\mathbb{I}_{A}(\omega) = \begin{cases} 1, & \omega \in A; \\ 0, & \omega \notin A. \end{cases}$$

1.2 suite d'évènements

1.2.1 Limites d'une suite d'évènements:

Dans la théorie des ensembles, la réunion $\bigcup_n A_n$ (on écrit encore $\bigcup_n^\infty An$) de la suite (A_n) est l'ensemble des éléments $\omega \in \Omega$ ayant la propriété "il existe un entier n tel que $\omega \in A_n$ ".

Dans le langage des probabilités, compte tenu de la transcription ci-dessus, l'évènement $\bigcup_n A_n$ est lévènement" l'un au moins des A_n se réalise".

De même, l'évènement $\bigcap_n A_n$ est l'évènement" tous les A_n se réalise".

-Si la suite (A_n) est croissante, c'est-à-dire si l'on a $A_n \subset A_{n+1}$ pour toutn, la réunion $\bigcup_n A_n$ de la suite (A_n) est aussi appelée la limite de la suite. On écrit alors

$$\bigcup_{n} A_n = \lim_{n} A_n.$$

-De même, si la suite (A_n) est décroissante, à savoir si $A_n \supset A_{n+1}$ pour tout n, l'intersection $\bigcap_n A_n$ de la suite est encore appelée la limite de la suite. On écrit

$$\bigcap_{n} A_n = \lim_{n} A_n.$$

Lorsquune suite (A_n) est ou bien croissante, ou bien décroissante, on dit qu'elle est monotone.

1.2.2 Limites inférieure et supérieure:

Définition 1.8. La limite inférieure de la suite (A_n) est définie comme l'ensemble, noté lim $\inf_n A_n$, de tous les éléments ω de Ω qui appartiennent à tous les (A_n) sauf à un nombre fini d'entre eux.

De même, la limite supérieure de la suite (A_n) est l'ensemble, noté $\limsup_n A_n$, de tous les éléments ω de Ω qui appartiennent à A_n pour une infinité d'indices n.

Propostion 1.1. Soit (A_n) une suite de parties d'un ensemble Ω Alors

$$\limsup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}; \liminf_{n} A_{n} = \bigcup_{n=1}^{\infty} \bigcap_{m=m}^{\infty} A_{m}; \liminf_{n} A_{n} \subset \limsup_{n} A_{n}.$$

Démonstration 1. Dire que ω appartient à tous les A_n sauf à un nombre fini, c'est dire qu'à partir d'un rang n, il appartient à l'intersection $B_n = \bigcap_{m \geq n} A_m$. Par conséquent, il existe un entier n tel que $\omega \in B_n$, ce qui prouve la première identité.

Le fait pour l'élément ω d'appartenir à une infinité de parties A_n veut dire qu'aussi loin qu'on peut aller dans la suite des entiers, disons à l'indice n, cet élément appartient toujours à la réunion $C_n = \bigcup_{m \geq n} A_m$. Par conséquent, ω appartient à l'intersection de la suite (C_n) , ce qui établit la seconde identité.

L'inclusion est banale, car si ω appartient à $\liminf_n A_n$, il appartient à tous les A_n à partir d'un certain rang, donc à une infinité d'évènements A_n . \diamondsuit

Posons

$$A_* = \liminf_n A_n \text{ et } A^* = \limsup_n A_n.$$

les relations suivantes sont vérifiée

$$(A_*)^c = \limsup_n A_n^c \text{ et } (A^*)^c = \liminf_n A_n^c (**)$$

Définition 1.9. Si $\liminf_n A_n = \limsup_n A_n$, on dit que la suite (A_n) a une limite et on écrit :

$$\lim_{n} A_n = \liminf_{n} A_n = \limsup_{n} A_n.$$

On dit encore que la suite (A_n) tend vers $A = \lim_n A_n$ ou converge vers A.

Propostion 1.2. Lorsque la suite (A_n) est monotone, alors

$$\lim_{n} A_n = \lim_{n} \sup_{n} A_n = \liminf_{n} A_n.$$

Démonstration 2. (En exercice)

Remarque Dans le langage des probabilités, si l'on considère les termes de la suite (An) comme des évènements, l'ensemble $\liminf_n A_n$ est alors l'évènement " tous les A_n se réalisent après un certain rang ". De même, $\limsup_n A_n$ est l'évènement " il se produit une infinité d'évènements A_n ".

1.3 Lemme de Borel-Cantelli

Définition 1.10. Une famille $(\mathcal{B}_i)_{i\in I}$ de sous-classes de \mathcal{A} est dite indépendante (pour \mathbb{P}) si pour tout choix de $i_1, ..., i_p \in I$ (distincts) et tout $A_{i_1} \in (\mathcal{B}_{i_1}), ..., A_{i_p} \in (\mathcal{B}_{i_p})$, on a :

$$\mathbb{P}\left(A_{i_1} \cap ... \cap A_{i_p}\right) = \prod_{k=1}^p \mathbb{P}\left(A_{i_k}\right)$$

Lemme 1.1. Si les \mathcal{B}_i sont indépendantes et stables par intersection, les tribus engendrées $\sigma(\mathcal{B}_i)$ le sont encore.

Il en résulte que des variables aléatoires $X_1,...,X_n$ sont indépendantes si et seulement si la loi du n-uplet (vecteur alátoire) $(X_i,...,X_n)$ est gale au produit des lois de $X_i,...,X_n:\mathbb{P}_{(X_1,...,X_n)}=\mathbb{P}_{X_1}\otimes...\mathbb{P}_{X_n}$.

Propostion 1.3. (Lemme de Borel-Cantelli).

Soit $(A_n)_{n\geq 1}$ une suite d'évènements, et A leur plus grande limite. Alors :

a)
$$Si \sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$$
, on $a \mathbb{P}(A) = 0$.

b) Si
$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$$
, et si les $A_n, n > 1$, sont indépendants, on a $\mathbb{P}(A) = 1$.

Démonstration 3. (En exercice)

1.4 Convergences

1.4.1 Convergence en probabilité, convergence presque sûre et convergence en loi.

Définition 1.11. convergence en probabilité:

On dit qu'une suite $(X_n)_{n\geq 1}$ converge en probabilité vers X variable aléatoire réelle, et on note $X_n\to X$, si :

$$\forall \epsilon > 0, \mathbb{P}(|X_n - X| > \epsilon) \longrightarrow 0$$

Propostion 1.4. La suite $(X_n)_{n\geq 1}$ converge en probabilité vers X si et seulement si :

$$(\forall \epsilon > 0) \ (\exists N \ge 1), n \ge N \Rightarrow \mathbb{P} (|X_n - X| \ge \epsilon) \le \epsilon.$$

Démonstration 4. La condition néessaire est clair. Inversement, si l'on a cette condition, pour tout t > 0 donné, on a, si $0 < \epsilon \le t$, pour $n \ge N : \mathbb{P}(|X_n - X| \ge t) \le \mathbb{P}(|X_n - X| \ge \epsilon) \le \epsilon$, ce qui montre que $\mathbb{P}(|X_n - X| \ge t) \xrightarrow[n \to \infty]{} 0$

Définition 1.12. On dit qu'une suite $(X_n)n$ de variables aléatoires converge presque sûrement vers la variable aléatoire X, et l'on note $X_n \xrightarrow[n \to \infty]{\text{p.s}} X$, s'il existe un $\Omega_0 \in \mathcal{A}$ avec $\mathbb{P}(\Omega_0) = 1$ tel que $X_n(\omega) \longrightarrow X(\omega)$ pour tout $\omega \in \Omega_0$.

-On désignera par $L^0 = L^0(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R})$ l'espace vectoriel des classes d'équivalence presque surement(p.s)des variables aléatoires réelles.

Remarque: Pour ces distances, l'espace L^0 est un espace vectoriel topologique, non localement convexe, et il est complet pour ces distances.

Propostion 1.5. On pose : $d(|X - Y|) = \mathbb{E}\left(\frac{|X - Y|}{1 + |X - Y|}\right)$;. Alors 1. d est une distance sur L^0 , invariante par translation.

 $2.d(X_n, X) \longrightarrow 0$ si et seulement si $X_n \xrightarrow{\mathbb{P}} X$.

Démonstration 5. 1) En exercice

2)la démonstration de est basée sur le lemme suivant

Lemme 1.2. (inégalité de Markov) Pour toute Y, r - fois integrable, on a,

$$\forall \epsilon > 0, \mathbb{P}(|Y| \ge \epsilon) \le \frac{1}{\epsilon^r} \mathbb{E}(|Y|^r).$$

Cette inégalité est souvent appelé inégalité de Bienaymé-Tchebychev, qui en est un cas particulier, pour r=2, lorsque l'on centre la v.a.r. :

$$\mathbb{P}(|Y| - \mathbb{E}(|Y|) \ge \epsilon) \le \frac{1}{\epsilon^2} Var(|Y|)$$

En effet, la convergence pour d'entraı̂ne la convergence en probabilité, par l'inégalité de Bienaymé-Tchebychev (ou plutôt de Markov), et la croissance de $t \longrightarrow \frac{t}{l+t}$.

Inversement, si $X_n \longrightarrow X$,

donnons-nous un ϵ , et choisissons $\epsilon > 0$ tel $\frac{\epsilon}{1+\epsilon} \le \frac{\epsilon}{2}$, puis $n_0 \ge 1$ tel que $\mathbb{P}(|X_n - X| \ge \epsilon) \le \frac{\epsilon}{2}$ pour $n \ge 1$

 n_0 ; on a alors, pour $n \ge n_0$:

$$d(|X_n - X|) = \mathbb{E}\left(\frac{|X_n - X|}{1 + |X_n - X|}\right)$$

$$= \int_{|X_n - X| \ge \epsilon} \frac{|X_n - X|}{1 + |X_n - X|} d\mathbb{P} + \int_{|X_n - X| < \epsilon} \frac{|X_n - X|}{1 + |X_n - X|} d\mathbb{P}$$

$$\leq \mathbb{P}(|X_n - X| \ge t) + \frac{\epsilon}{1 + \epsilon}$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

Propostion 1.6. Soit $(X_n)_{n\geq 1}$, et X des variables aléatoires. Alors :

- 1) Si la suite $(X_n)_{n>1}$ converge presque sûrement vers X, elle converge en probabilité vers X.
- 2) $Si(X_n)$ converge en probabilité vers X, on peut extraire une sous-suite qui converge presque sûrement vers X.

Lemme 1.3. Soit $(X_n)_{n\geq 1}$, et X des variables aléatoires. Alors :

La suite $(X_n)_{n>1}$ converge presque sûrement vers 0 si et seulement si $Z_n = \sup |X_k| \xrightarrow[n \to \infty]{\mathbb{P}} 0$.

Démonstration 6. Remarquons tout d'abord que $Z_n \xrightarrow[n \to \infty]{\mathbb{P}} 0$ si et seulement si,

pour tout $\epsilon > 0$, on a $\mathbb{P}(|Z_n| > \epsilon) \xrightarrow[n \to \infty]{} 0$ (on a mis > au lieu de \ge).

Pour tout $\epsilon > 0$ et tout $n \geq 1$, posons :

$$E_n(\epsilon) = \{|X_n| > \epsilon\}$$

et:

$$E(\epsilon) = \limsup_{n} E_n(\epsilon) = \bigcap_{n \ge 1} \bigcup_{m \ge n} E_m$$

Remarquons maintenant que $X_n \xrightarrow[n \to \infty]{} 0$ si et seulement si :

$$(\forall \epsilon > 0)(\exists n > 1)(\forall m \ge n)|X_m(\omega)| \le \epsilon;$$

par conséquent :

$$\{\omega; X_n(w) \nrightarrow 0\} = \bigcup_{\epsilon>0} E_{\epsilon} \bigcup_{j>0} E_{1/j}$$

de sorte que :

$$X_n \xrightarrow[n \to \infty]{p.s} X \iff \mathbb{P}(E) = 0, \forall \epsilon > 0$$

Mais

$$\mathbb{P}\left(E(\epsilon)\right) = \lim_{n \to \infty} \mathbb{P}\left(\bigcup_{m > n} E_m\right),\,$$

et cela donne le résultat puisque :

$$\bigcup_{m>n} E_n(\epsilon) = \{ \sup_{m \ge n} |X_n| > \epsilon \}$$

Pour le 2), on utilisera un autre lemme, qui donne un critère pratique de convergence presque sûre.

Lemme 1.4. Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. Si l'on a :

$$\sum_{n\geq 1} \mathbb{P}(|X_n| > \epsilon) < +\infty \text{ pour tout } \epsilon > 0, alors X_n \xrightarrow[n \to \infty]{p.s} 0$$

Démonstration 7. Il suffit de remarquer que la condition entraîne :

$$\mathbb{P}(E(\epsilon)) = \mathbb{P}\left(\limsup_{n} E_n(\epsilon)\right) = 0$$

par le Lemme de Borel-Cantelli.

On peut alors revenir et terminer la preuve de la Proposition:

 $si\ X_n \xrightarrow[n \to \infty]{\mathbb{P}} 0$ on peut trouver une suite strictement croissante d'entiers $n_k, k > 1$, tels que :

$$\mathbb{P}\left(|X_{n_k} - X| > \frac{1}{2^k}\right) \le \frac{1}{2^k}. Alors,$$

pour tout $\epsilon > 0$, on a, lorsque $\frac{1}{2^k} < \epsilon : \mathbb{P}\left(|X_{n_k} - X| > \epsilon\right) \le \mathbb{P}\left(|X_{n_k} - X| > \frac{1}{2^k}\right) \le \frac{1}{2^k}$

et ona $\sum_{n>1} \mathbb{P}(|X_{n_k}| > \epsilon) < +\infty,.$

On conclut que (X_{n_k}) coverge presque sûrement vers X.

1.4.2 Loi du 0-1 de Kolmogorov

Soit $(\mathcal{B}_n)_{n\geq 1}$ une suite de sous-tribus de \mathcal{A} . On note

$$\sigma(\mathcal{B}_{\infty}, \mathcal{B}_{\in}, ...)$$

la tribu engendré par $\mathcal{B}_{\infty}, \mathcal{B}_{\in}, \dots$

Définition 1.13. La tribu :

$$\mathcal{B}_{\infty} = \bigcap_{n\geq 1} \sigma(\mathcal{B}_n, \mathcal{B}_{n+1}, ...)$$

est appelée tribu asymptotique de la suite $(\mathcal{B}_n)_{n\geq 1}$

Propostion 1.7. Si $A_n \in \mathcal{B}_n$ pour tout $n \geq 1$, alors: $\limsup A_n \in \mathcal{B}_\infty$ et $\liminf A_n \in \mathcal{B}_\infty$

Démonstration 8. Comme $\limsup A_n = (\liminf A_n^c)^c$ il suffit de montrer que $\liminf A_n \in \mathcal{B}_{\infty}$

Or, pour tout $n \geq m$, on $a: \bigcap_{k\geq n} A_k \in (\mathcal{B}_m, \mathcal{B}_{m+1}, ...)$. Comme la suite $(\bigcap_{k\geq n} A_k)_{n\geq 1}$ est croissante, on a, pour tout $m\geq 1$: $\liminf A_n = \bigcup_{n\geq 1} \bigcap_{k\geq n} A_k = \bigcup_{n\geq m} \bigcap_{k\geq n} A_k$ ce qui donne bien le résultat annoncé.

Propostion 1.8. Si, pour tout $n > 1, X_n \longrightarrow \overline{\mathbb{R}}$ est une v.a.r. \mathcal{B}_n -mesurables., alors $\limsup X_n$ et $\liminf X_n$ sont des v.a.r. \mathcal{B}_{∞} -mesurables.

Démonstration 9. Il suffit de faire la preuve pour $X = \limsup X_n$. La v.a.r. $Y_n = \inf_{k \geq n} X_k$ est $\sigma(\mathcal{B}_n, \mathcal{B}_{n+1}, ...)$ mesurable ; donc $\sup_{n \geq m} Y_n$ est $\sigma(\mathcal{B}_m, \mathcal{B}_{m+1}, ...)$ - mesurable. On a pour tout $m \geq 1, X = \sup_{n \geq m} Y_n$; donc X est $\sigma(\mathcal{B}_m, \mathcal{B}_{m+1}, ...)$ -mesurable pour tout $m \geq 1$, et donc \mathcal{B}_{∞} -mesurable.

Corollaire 1.5. L'ensemble de convergence : $\{\omega; \lim_n X_n(\omega) existe\}$ est dans la tribu asymptotique.

Théorème 1.6. (loi du 0-1 de Kolmogorov)

Si les tribus \mathcal{B}_n , pour n > 1, sont indépendantes, alors tout $B \in \mathcal{B}_{\infty}$ est indépendant de lui-même, et $donc \ \mathbb{P}(B) = 0$ ou $\mathbb{P}(B) = 1$.

Démonstration 10. Pour tout m < n, les deux tribus : $\sigma(\mathcal{B}_1, ..., \mathcal{B}_m)$ et $\sigma(\mathcal{B}_n, \mathcal{B}_{n+1}, ...)$ sont indépendantes ; donc $\sigma(\mathcal{B}_1, ..., \mathcal{B}_m)$ et \mathcal{B}_{∞} sont indépendantes pour tout $m \ge 1$. Notons :

$$\mathcal{C} = \bigcup_{m \geq 1} \sigma\left(\mathcal{B}_1, ..., \mathcal{B}_m\right)$$

 \mathcal{C} est stable par intersection finie (car la suite $(\sigma(\mathcal{B}_1,...,\mathcal{B}_m))_{m\geq 1}$ est croissante), contient, et tout élèment de \mathcal{C} est indépendant de tout élèment de \mathcal{B}_{∞} . Par le critère d'indépendance, les tribus : $\sigma(\mathcal{C}) = \sigma(\mathcal{B}_1,...,\mathcal{B}_m)$ et \mathcal{B}_{∞} sont indépendantes. $\mathcal{B}_{\infty} \subset \sigma(\mathcal{B}_1,...,\mathcal{B}_m)$, \mathcal{B}_{∞} est indépendante d'elle-même, et donc, pour tout $B \in \mathcal{B}_{\infty}$, on $a : \mathbb{P}(B) = \mathbb{P}(B \cap B) = \mathbb{P}(B).\mathbb{P}(B)$; donc $\mathbb{P}(B) = 0$ ou $\mathbb{P}(B) = 1$.

Corollaire 1.7. Si les v.a.r. $(X_n)_{n>1}$, sont indépendantes, alors les v.a.r. $\liminf X_n \limsup X_n$ sont p.s. constantes.

Démonstration 11. Prenons $\mathcal{B}_n = \sigma(X_n)$. On sait que $X = \liminf X_n$ est \mathcal{B}_∞ -mesurable. Si $\mathbb{P}(X = -\infty) = 1$ (respectivement $\mathbb{P}(X = +\infty) = 1$), alors $X = -\infty$ p.s(respectivement $+\infty$). Sinon, comme les tribus $\mathcal{B}_1, \mathcal{B}_2, ...$ sont indépendantes, on a, par la loi du 01 de Kolmogorov :

$$\mathbb{P}(X = -\infty) = \mathbb{P}(X = +\infty) = 0$$

X est donc p.s. à valeurs dans \mathbb{R} . De plus, pour tout $x \in \mathbb{R}$:

$$F_X(x) = \mathbb{P}(X \le x) = 0 \text{ ou } 1;$$

Comme F_X est continue à droite, il existe $a \in \mathbb{R}$ Donc $F_X(x) = \mathbb{I}_{[a,+1[}(x), de \text{ sorte que } X = a p.s.$

1.4.3 Convergence en loi dans L^0

Définition 1.14. On dit qu'une suite $(X_n)_n \ge 1$ de variables aléatoires converge en loi vers la variable aléatoire X, et l'on note $Xn \xrightarrow[n \to \infty]{\mathcal{L}} X$, si pour toute fonction f continue et bornée sur \mathbb{R} , on a :

$$\int_{\mathbb{R}} f(x) d\mathbb{P}_{X_n}(x) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} f(x) d\mathbb{P}_X(x)$$

De faon équivalente :

$$\mathbb{E}\left[f(X_n)\right] \xrightarrow[n \to \infty]{} \mathbb{E}\left[f(X)\right], \forall f \in \mathcal{C}_b(\mathbb{R}).$$

avec $\mathcal{C}_b(\mathbb{R})$ est l'ensemble de fonctions continues et bornées.

Définition 1.15. appelle fonction caractéristique de la variable aléatoire X la fonction définie pour tout $t \in \mathbb{R}$ par :

$$\Phi_X(t) = \mathbb{E}(e^{itX}).$$