\mathcal{U} niversité de \mathcal{M} 'hamad \mathcal{B} ougara de \mathcal{B} oumerdès

 \mathcal{F} aculté des \mathcal{S} ciences \mathcal{D} euxième \mathcal{A} nnée \mathcal{L} icence \mathcal{R} echerche \mathcal{O} pérationnelle

 \mathcal{D} épartement de \mathcal{M} athématiques \mathcal{R} esponsable du \mathcal{M} odule: \mathcal{M} r. \mathcal{M} . $\mathcal{B}\mathcal{E}\mathcal{Z}\mathcal{O}\mathcal{U}\mathcal{I}$

\mathcal{C} orrection de l' \mathcal{ETLD} d' \mathcal{O} ptimisation \mathcal{L} inéaire

Exo 1: (11 Points=3+(1+1)+(1+1)+2+2), Exo 2: (06 Points=3+(1+1+1)), Exo 3: (03 Points=1.5+1.5)

Exercice $N^{\circ}01 \rightsquigarrow \rightsquigarrow \rightsquigarrow$

Considérons le programme linéaire (P_{λ}) , où $\lambda \geq 0$:

$$(P_{\lambda}): \begin{cases} Z(max) = 2x_1 + x_2 + \lambda x_3 \\ s.t. & x_1 + x_2 + 3x_3 \le 6 \\ 2x_1 + x_2 + 5x_3 \le 8 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

1. Étudier, en fonction de λ , la variation de la solution optimale.

Premièrement, on met le problème sous forme standard:

$$(P_{\lambda}): \begin{cases} Z(max) = 2x_1 + x_2 + \lambda x_3 \\ s.t. & x_1 + x_2 + 3x_3 + x_4 = 6 \\ 2x_1 + x_2 + 5x_3 + x_5 = 8 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

La base initiale est $A_B = \{a_4, a_5\}$, d'où $J_B = \{4, 5\}$, $J_N = \{1, 2, 3\}$.

X			x_1	x_2	x_3	x_4	x_5
С			2	1	λ	0	0
C_B	Base	b	a_1	a_2	a_3	a_4	a_5
0	a_4	6	1	1	3	1	0
0	a_5	8	2	1	5	0	1
Z=0		Е	2	1	λ	0	0

 $E_{j_0} = \max\{E_j, j \in J_N\}$, on aura alors deux cas de figure:

(a) Si $\lambda \leq 2$, alors, $E_{j_0} = 2 = E_1$, la variable entrante dans la base est: x_1 . Pour déterminer la variable sortante de la base, on cherchera $\min \theta = \min\{\frac{x_j}{a_{ij_0}}, a_{ij_0} > 0\} = \min\{6, 4\} = 4$. La variable sortante de la base est donc: x_5 , la nouvelle base est: $A_B = \{a_4, a_1\}, J_B = \{4, 1\}, J_N = \{2, 3, 5\}.$

X			x_1	x_2	x_3	x_4	x_5
С			2	1	λ	0	0
C_B	Base	b	a_1	a_2	a_3	a_4	a_5
0	a_4	2	0	$\frac{1}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$
2	a_1	4	1	$\frac{1}{2}$	$\frac{5}{2}$	0	$\frac{1}{2}$
Z=8		E	0	0	-4	0	-1

Alors la solution optimale est $x^* = (4 \ 0 \ 0 \ 2 \ 0)$,

la valeur de la fonction objectif est: Z=8.

(b) Si $\lambda > 2$, alors, $E_{j_0} = \lambda = E_3$, la variable entrante dans la base est: x_3 . Pour déterminer la variable sortante de la base, on cherchera $\min \theta = \min\{\frac{x_j}{a_{ij_0}}, a_{ij_0} > 0\} = \min\{2, \frac{8}{5}\} = \frac{8}{5}$. Alors la variable sortante de la base est: x_5 . La nouvelle base est: $A_B = \{a_4, a_3\}$. $J_B = \{4, 3\}$, $J_N = \{1, 2, 5\}$.

X			x_1	x_2	x_3	x_4	x_5
С			2	1	λ	0	0
C_B	Base	b	a_1	a_2	a_3	a_4	a_5
0	a_4	$\frac{6}{5}$	$-\frac{1}{5}$	$\frac{2}{5}$	0	1	$-\frac{3}{5}$
λ	a_3	$\frac{8}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	1	0	$\frac{1}{5}$
$Z = \frac{8}{5}\lambda$		Е	$2-\frac{2}{5}\lambda$	$1-\frac{1}{5}\lambda$	0	0	$-\frac{1}{5}\lambda$

- i. Pour $\lambda \geq 5$, la solution actuelle $x^* = (0, 0, \frac{8}{5}, \frac{6}{5}, 0)$ est optimale, la valeur de la fonction objectif est: $Z = \frac{8}{5}\lambda$.
- ii. Pour $2 < \lambda < 5$, on remarque que $E_5 < 0$ et $E_1 \le E_2 < 0, \forall 2 < \lambda < 5$, Alors $j_0 = 1$ et la variable entrante à la base est x_1 , pout déterminer la variable sortante de la base, on calcule le ratio $\theta = \{\frac{x_j}{a_{ij_0}}, a_{ij_0} > 0\} = \{\infty, 4\}$, alors $j_1 = 3$ ainsi, la variable sortante de la base est: x_3 .

X			x_1	x_2	x_3	x_4	x_5
С			2	1	λ	0	0
C_B	Base	b	a_1	a_2	a_3	a_4	a_5
0	a_4	2	0	$\frac{1}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$
2	a_1	4	1	$\frac{\overline{1}}{2}$	$\frac{5}{2}$	0	$\frac{1}{2}$
Z=8		Е	0	0	-2	0	-1

Alors la solution optimale est $x^* = \begin{pmatrix} 4 & 0 & 0 & 2 & 0 \end{pmatrix}$, la valeur de la fonction objectif est: Z = 8.

Résumé:

λ	[0, 5]	$[5,\infty[$
Solution	$(4 \ 0 \ 0 \ 2 \ 0)$	$(0,0,\frac{8}{5},\frac{6}{5},0)$
Valeur de la fonction objectif	8	$Z = \frac{8}{5}\lambda$

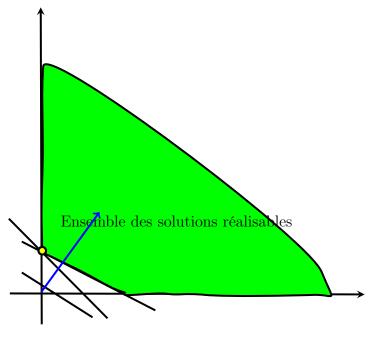
- 2. Soit (P_1) le problème obtenu pour $\lambda = 1$:
 - 2.1 Déduire la solution de (P_1) . La solution est-elle unique?

La solution (4 0 0 2 0) est déjà trouvée dans la section 1.a, elle n'est pas unique, car il existe une composante correspondante à une variable hors base du vecteur des estimations qui nulle: $E_2 = 0$, tel que $2 \in J_N$.

2.2 Écrire le problème (D_1) le dual de (P_1) .

(D)
$$\begin{cases} W(min) = 6y_1 + 8y_2 \\ s.t. & y_1 + 2y_2 \ge 2 \\ y_1 + y_2 & \ge 1 \\ 3y_1 + 5y_2 & \ge 1 \\ y_1, y_2 \ge 0 \end{cases}$$

Déduire la solution optimale du problème (D_1) . D'après le tableau final du simplexe obtenu pour $\lambda = 1$, la solution optimale du dual est $y^* = (0, 1)$. Elle est vérifiée graphiquement, voir



la figure.

- 2.3 Vérifier que le théorème fort de la dualité est vérifié. Z(4,0,0)=8=W(0,1)=8, alors le théorème est vérifié.
- 2.4 La solution $x = \begin{pmatrix} 2 & 4 & 0 \end{pmatrix}^T$ est-elle une solution de base réalisable pour (P_1) ? Est-elle optimale pour (P_1) ?

La base correspondante à Oui $x = \begin{pmatrix} 2 & 4 & 0 \end{pmatrix}^T$ est $A_B = \{a_1, a_2\} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$, det $A_B = -1 \neq 0$ alors, A_B est une base. Comme $A_B^{-1}.b = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \geq 0$, alors, $x = \begin{pmatrix} 2 & 4 & 0 \end{pmatrix}^T$ est une solution de base réalisable. Pour vérifier l'optimalité de cette solution, on calcule le vecteur des estimations $E_N = C_N^T - C_B^T.A_B^{-1}.A_N = (-4, 0, -1) \leq 0 \Rightarrow x = \begin{pmatrix} 2 & 4 & 0 \end{pmatrix}^T$ est une solution optimale de (P_1) .

Exercice N°02

Partie 1.

Soit le problème de programmation linéaire suivant:

$$(P): \begin{cases} Z(max) = 2x_1 - x_2 + x_3 \\ 3x_1 - x_2 + x_3 & =1 \\ x_1 + x_2 & =5 \\ 2x_1 - x_2 & =3 \\ x_j \ge 0 & j = \overline{1,3} \end{cases}$$

1. Écrire le problème auxiliaire correspondant à (P).

$$(P_{aux}): \begin{cases} Z(max) = -t_1 - t_2 \\ 3x_1 - x_2 + x_3 & =1 \\ x_1 + x_2 + t_1 & =5 \\ 2x_1 - x_2 + t_2 & =3 \\ x_j \ge 0 & j = \overline{1,3} \end{cases}$$

2. Résoudre par la méthode des deux phases du simplexe le problème (P).

X			x_1	x_2	x_3	x_4	x_5	
С			0	0	0	-1	-1	
C_B	base	b	a_1	a_2	a_3	a_4	a_5	θ
0	a_3	1	3	-1	1	0	0	$\frac{1}{3}$
-1	a_4	5	1	1	0	1	0	5
-1	a_5	3	2	-1	0	0	1	$\frac{1}{3}$
Z=-8		Е	3	0	0	0	0	

X			x_1	x_2	x_3	x_4	x_5	
С			0	0	0	-1	-1	
C_B	base	b	a_1	a_2	a_3	a_4	a_5	θ
0	a_1	$\frac{1}{3}$	1	$-\frac{1}{3}$	$\frac{1}{3}$	0	0	∞
-1	a_4	$\frac{14}{3}$	0	$\frac{4}{3}$	$-\frac{1}{3}$	1	0	$\frac{7}{2}$
-1	a_5	$\frac{7}{3}$	0	$-\frac{1}{3}$	$-\frac{2}{3}$	0	1	∞
Z=-7		Ε	0	1	-1	0	0	

X			x_1	x_2	x_3	x_4	x_5
С			0	0	0	-1	-1
C_B	base	b	a_1	a_2	a_3	a_4	a_5
0	a_1	$\frac{7}{2}$	1	0	$\frac{1}{4}$	$\frac{1}{4}$	0
0	a_2	$\frac{7}{2}$	0	1	$-\frac{1}{4}$	$\frac{3}{4}$	0
-1	a_5	$\frac{7}{2}$	0	0	$-\frac{1}{4}$	$\frac{1}{4}$	1
$Z=-\frac{7}{2}$		Е	0	0	$-\frac{3}{4}$	$-\frac{3}{4}$	0

Comme tous les $E_j \geq 0$, alors, la phase 1 est terminée. Mais, on remarque qu'il existe une variable artificielle dans la base du dernier tableau de la première phase. Donc le problème (P) est IMPOSSIBLE.

Partie 2.

Ce qui suit, est le tableau final de la phase 1 du simplexe, d'une résolution d'un problème de programmation linéaire. Où, t_1 et t_2 sont des variables artificielles pour deux des trois contraintes du problème.

X			x_1	x_2	x_3	x_4	x_5
С			0	0	0	-1	-1
C_B	base	b	a_1	a_2	a_3	a_4	a_5
0	a_1	$\frac{7}{2}$	1	0	$\frac{1}{4}$	$\frac{1}{4}$	0
0	a_2	$\frac{7}{2}$	0	1	$-\frac{1}{4}$	$\frac{4}{3}$	0
-1	a_5	α	0	0	$-\frac{1}{4}$	$\frac{1}{4}$	1
$Z = \lambda$		Е	0	0	β	δ	0

Trouver les conditions pour les paramètres $\alpha, \beta, \lambda, \delta$ tel que les énoncés suivants soient vrais.

- 1. Le problème est irréalisable: $\alpha > 0$ et $\beta \le 0$ et $\delta \le 0$ et $\lambda \ne 0$.
- 2. Le problème est réalisable: $\alpha=0$ et $\beta\leq 0$ et $\delta\leq 0$ et $\lambda=0.$
- 3. Le problème est réalisable mais il contient une contrainte redondante: $\alpha=0$ et $\beta\leq 0$ et $\delta\leq 0$ et $\lambda=0$. La troisième contrainte est redondante.

Exercice N°03

1. • S_1 convexe ssi:

$$\forall x, y \in S_1, \alpha \in [0, 1] \Rightarrow z = [\alpha x + (1 - \alpha)y] \in S_1 :$$

```
On a x \in S_1, i.e. x_1 + x_2 \le 1.....(1) et x_1 \ge 0.....(2), y \in S_1, i.e. y_1 + y_2 \le 1.....(3) et y_1 \ge 0.....(4), En multipliant (1) par \alpha et (2) par (1 - \alpha), on aura: \alpha x_1 + \alpha x_2 \le \alpha.....(5), (1 - \alpha)y_1 + (1 - \alpha)y_2 \le (1 - \alpha) \Rightarrow (1 - \alpha)y_1 + (1 - \alpha)y_2 - 1 \le -\alpha \Rightarrow -(1 - \alpha)y_1 - (1 - \alpha)y_2 + 1 \ge \alpha......(6) De (5) et (6), on aura: \alpha x_1 + \alpha x_2 \le -(1 - \alpha)y_1 - (1 - \alpha)y_2 + 1 \Rightarrow \alpha x_1 + \alpha x_2 + (1 - \alpha)y_1 + (1 - \alpha)y_2 \le 1 \Rightarrow \alpha x_1 + (1 - \alpha)y_1 + \alpha x_2 + (1 - \alpha)y_2 \le 1 \Rightarrow z_1 + z_2 \le 1......(*)
```

On a $x_1 \ge 0$, et $y_1 \ge 0$ alors: $\alpha.x_1 \ge 0$, et $(1 - \alpha).y_1 \ge 0$. La somme de deux nombres non négatif est négatif, alors:

$$\alpha.x_1 + (1 - \alpha).y_1 \ge 0 \Leftrightarrow z_1 \ge 0.....(**).$$

De (*) et (**), on conclue que $z \in S_1$.

- De même que pour S_2
- 2. Il suffit de trouver deux points dans S, l'un $x \in S_1$ et l'autre $y \in S_2$, tel que leur combinaison linéaire n'appartient pas à S. Exemple: x = (0,1), y = (1,1), et $\alpha = \frac{1}{2}$, alors $z = \alpha x + (1-\alpha)y = (\frac{1}{2},1) \notin S_1$ et $z = (\frac{1}{2},1) \notin S_2 \Longrightarrow z \notin S$. Alors, S n'est pas convexe.