\mathcal{U} niversité de \mathcal{M} 'hamad \mathcal{B} ougara de \mathcal{B} oumerdès

Faculté des Sciences
Deuxième Année Licence
Recherche Opérationnelle

 \mathcal{D} épartement de \mathcal{M} athématiques \mathcal{R} esponsable du \mathcal{M} odule: \mathcal{M} r. \mathcal{M} . $\mathcal{B}\mathcal{E}\mathcal{Z}\mathcal{O}\mathcal{U}\mathcal{I}$

\mathcal{C} orrection de l' \mathcal{E} xamen \mathcal{F} inal d' \mathcal{O} ptimisation \mathcal{L} inéaire

Exo 1: (05 Points=2+2+1), Exo 2: (09 Points=3+1+1+2+1+1), Exo 3: (06 Points=2+1+1+2)

Exercice N°01

1. Modélisation:

 x_1 : nombre de CD produits, x_2 : Nombre de DVD produits.

$$\begin{cases}
Max(Z) = 30x_1 + 40x_2 \\
s.t. & x_1 + 2x_2 \le 200 \text{ (Matière première)} \\
5x_1 + 6x_2 \le 420 \text{ (Temps disponible sur la machine de métallisation)} \\
4x_1 + 6x_2 \le 420 \text{ (Temps disponible sur la machine de vernissage)} \\
x_1, x_2 \ge 0
\end{cases}$$

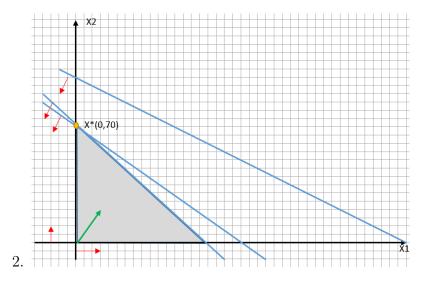


Figure 1: Résolution graphique

3. Oui, il existe des contraintes redondantes, qui sont: la première et la troisième. Si on les supprime on obtient le même ensemble de définition, Voire le graphe.

Exercice N°02

Forme standard
$$(P_{\lambda}):$$

$$\begin{cases} Z(max) = 2x_1 + \lambda x_2 \\ s.t. & x_1 + x_2 + x_3 \\ x_2 + x_4 & = 3 \\ x_1, x_2, x_3, x_4 \geq 0 \end{cases} = 4$$

		С	2	λ	0	0	
	C_b	В	x_1	x_2	x_3	x_4	b
1.	2	x_1	1	1	1	0	4
	0	x_4	0	1	0	1	3
		Δ	0	λ -2	-2	0	8

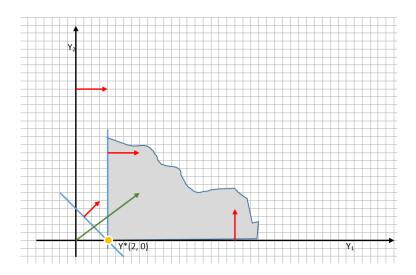


Figure 2: Résolution du problème dual

Si $\lambda \leq 2$, alors la solution actuelle x = (4, 0, 0, 3). Sinon, si $\lambda > 2$, alors la solution actuelle n'est pas optimale, la variable entrante est alors x_2 , et la variable sortante est x_4 (min $\{\frac{4}{1}, \frac{3}{1}\} = 3$). On aura alors le tableau suivant:

	С	2	λ	0	0	
C_b	В	x_1	x_2	x_3	x_4	b
2	x_1	1	0	1	-1	1
λ	x_2	0	1	0	1	3
	Δ	0	0	-2	2 - λ	$2+3\lambda$

Comme $\lambda > 2$, alors, $\Delta \leq \operatorname{car} 2 - \lambda \leq 0$, la solution actuelle $x^* = (1, 3, 0, 0)$ est optimale.

- 2.1 La solution optimale de (P_2) est x = (4, 0, 0, 3).
- 2.2 La solution n'est pas unique car il existe une variable hors base (x_2) , dont le coût réduit $\Delta_2=0$.
- 2.2.1 Si on introduit x_2 dans la base, on aura $x^{*(2)} = (1300)$.
 - 2.3 Le problème dual est:

$$(D_2) \begin{cases} Min(W) & 4y_1 + 3y_2 \\ & y_1 + 0y_2 \ge 2 \\ & y_1 + y_2 \ge 2 \\ & y_1 \ge 0 \\ & y_1 \ge 0 \end{cases}$$

- 2.4 Vérification du théorème fort de la dualité: La solution est $y^* = (2,0)$, la valeur de la fonction objectif est: $W^* = 8 = Z^*$, alors le théorème fort de la dualité est vérifié.
- 2.5 D'après le graphe, on remarque que le point (1,1) appartient à l'intérieur de l'ensemble de définition, alors, le point est réalisable, mais, ce point n'est pas un point extrême, alors, il n'est pas solution de base donc pas optimal.

Exercice N°03

- 1. Résolution du problème (P_3) :
 - (a) Ecriture du problème sous forme standard:

$$(P_3): \begin{cases} Z(max) = 10x_1 + 2x_2 \\ 5x_1 + 2x_2 + 5x_3 + x_4 &= 10 \\ 1x_1 - 1x_2 + 2x_3 &= 4 \\ x_j \ge 0 & j = \overline{1,4} \end{cases}$$

(b) Formulation du problème auxiliaire:

$$(P_{aux}): \begin{cases} W(max) = -x_1 \\ 5x_1 + 2x_2 + 5x_3 + x_4 = 10 \\ 1x_1 - 1x_2 + 2x_3 + v_1 = 4 \\ x_j, v_1 \ge 0, \qquad j = \overline{1, 4} \end{cases}$$

	С	0	0	0	0	-1	
C_b	В	x_1	x_2	x_3	x_4	v_1	b
0	x_4	5	2	5	1	0	10
-1	v_1	1	-1	2	0	1	4
	Δ	1	-1	2	0	0	-4

 x_3 entre dans la base et x_4 sort de la base.

	С	0	0	0	0	-1	
C_b	В	x_1	x_2	x_3	x_4	v_1	b
0	x_4	1	$\frac{2}{5}$	1	$\frac{1}{5}$	0	2
-1	v_1	-1	$\frac{-9}{5}$	0	$\frac{-2}{5}$	1	0
	Δ	-1	$\frac{-9}{5}$	0	$\frac{-2}{5}$	0	0

Le vecteur coût étant non positif, la phase 1 est terminée. Comme la fonction objectif est nulle on passe à la phase 2. Comme il existe une variable artificielle dans la base qui est égale à zéro alors on supprime la ligne et colonne correspondant à v_1 et on passe à la phase 2.

	С	10	2	0	0	
C_b	В	x_1	x_2	x_3	x_4	b
0	x_4	1	$\frac{2}{5}$	1	$\frac{1}{5}$	2
	Δ	10	2	0	0	0

 x_1 entre dans la base et x_4 sort de la base.

_					_	
	С	10	2	0	0	
C_b	В	x_1	x_2	x_3	x_4	b
10	x_1	1	$\frac{2}{5}$	1	$\frac{1}{5}$	2
	Δ	0	-2	-10	-2	20

La solution optimale est x = (2, 0, 0, 0).

- 2. Oui, la deuxième contrainte est redondante, la fin de la phase 1, $v_1 = 0 \in B$.
- 3. Non, le problème n'est pas dégénéré car il n'existe aucune variable de base nulle.
- 4. Le dual de P_3 :

$$(D) \begin{cases} min(W) & 10y_1 + 4y_2 \\ & 5y_1 + y_1 \ge 10 \\ & 2y_1 - y_2 \ge 2 \\ & 5y_1 + 2y_2 \ge 0 \\ & y_1 \ge 0, y_2 \in R \end{cases}$$

5. Avec la méthode graphique, on trouve la solution optimale de D est: y = (2,0), qu'on peut aussi déduire du du coût réduit du dernier tableau optimal.