Introduction
Tableau de contingence
Distribution conjoint
Distribution marginale
Distribution conditionnelle
Indépendance

Cours Math310

Première partie : statistique descriptive (Suite)

Chapitre 2: Séries statistiques à deux variables

M. BEZOUI

10 janvier 2012

- Introduction
- 2 Tableau de contingence
- 3 Distribution conjoint
- 4 Distribution marginale
- 5 Distribution conditionnelle
- 6 Indépendance

Un peu de silence S.V.P

- Introduction
- 2 Tableau de contingence
- 3 Distribution conjoint
- 4 Distribution marginale
- **(5)** Distribution conditionnelle
- 6 Indépendance

Introduction

Etudier le lien entre deux variables (caractères) sur une même population (taille et point d'un nouveau né, vitesse et consommation du véhicule,...). On appelera ces deux caractères X et Y, définis sur une population de taille n (n individus), on s'interesse à étudier le lien entre X et Y. Les données brutes sont les couples (x_i, y_i) , $i = \overline{1, n}$.

- Introduction
- 2 Tableau de contingence
- 3 Distribution conjoint
- 4 Distribution marginale
- 5 Distribution conditionnelle
- 6 Indépendance

Tableau de contingence (Définition)

Le tableau de contingence est un moyen particulier de représenter simultanément deux caractères observés sur une même population, s'ils sont discrets ou bien continus et regroupés en classes. Les deux caractères sont X et Y, la taille de l'échantillon est n. Les modalités ou classes de x seront notées x_1, x_2, \cdots, x_p , celles de Y sont notées y_1, y_2, \cdots, y_q .

Notations

On note:

- n_{ij} : l'effectif conjoint de x_i et y_j : c'est le nombre d'individus pour lesquels X prend la valeur x_k et Y la valeur y_j ,
- 2 $n_{i\bullet} = \sum_{j=1}^{q} n_{ij}$: l'effectif marginal de x_i : c'est le nombre d'individus pour lesquels X prend la valeur x_i ,
- 3 $n_{\bullet j} = \sum_{i=1}^{p} n_{ij}$: l'effectif marginal de y_j : c'est le nombre d'individus pour lesquels Y prend la valeur y_j .

Présentation

On représente ces valeurs dans un tableau à double entrée, dit tableau de contingence.

$X \setminus Y$	<i>y</i> ₁	<i>y</i> ₂	• • •	Уј	• • •	y_q	Total
<i>x</i> ₁	n ₁₁	n_{12}	• • •	n_{1j}		n_{1q}	n_{1ullet}
<i>x</i> ₂	n ₂₁	n_{22}	• • •	n_{2j}	• • •	n_{2q}	n _{2•}
•	:			٠	:	:	:
Χį	n _{i1}	n _{i2}	÷	n _{ij}	÷	n _{iq}	n _{i∙}
:	:	٠.	:	:	٠	:	:
x_p	n_{p1}	n_{p2}	:	n _{pj}	:	n _{pq}	n _{p•}
Total	$n_{\bullet 1}$	n _{•2}		n∙j		n₀q	$n_{\bullet \bullet} = n$

- Introduction
- 2 Tableau de contingence
- 3 Distribution conjoint
- 4 Distribution marginale
- **(5)** Distribution conditionnelle
- 6 Indépendance

Distribution conjoint

fréquence jointe notée f_{ij} , c'est la proportion d'individus ayant pris simultanément la modalité x_i de X et la modalité y_j de Y.

$$f_{ij} = \frac{n_{ij}}{n}$$

Définition

On appelle distribution conjointe du couple (X, Y) ou encore série statistique à deux dimensions, les données des couples (x_i, y_j) , $i = \overline{1, p}$, $j = \overline{1, q}$ et les fréquences jointes f_{ij} , $i = \overline{1, p}$, $j = \overline{1, q}$.

- Introduction
- 2 Tableau de contingence
- 3 Distribution conjoint
- 4 Distribution marginale
- **(5)** Distribution conditionnelle
- 6 Indépendance

fréquence marginale

Définition

On appelle fréquence marginale associée à la modalité x de X notée $f_{i\bullet}$ la proportion :

$$f_{i\bullet} = \frac{n_{i\bullet}}{n} = \sum_{i=1}^{q} f_{ij}$$

$$\sum_{i=1}^{p} f_{i\bullet} = 1$$

Distribution marginale

Définition

On appelle distribution marginale de la variable X (resp. Y), les données des couples $(x_i, f_{i\bullet}), i = \overline{1, p}, (\text{resp. } (y_i, f_{\bullet i}), j = \overline{1, q}).$

Caractéristiques numériques des distributions marginales

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{p} n_{i \bullet} x_{i} = \sum_{i=1}^{p} f_{i \bullet} x_{i}
V(x) \frac{1}{n} \sum_{i=1}^{p} n_{i \bullet} x_{i}^{2} - \overline{x}^{2} = \sum_{i=1}^{p} f_{i \bullet} x_{i}^{2} - \overline{x}^{2}
\sigma(x) = \sqrt{V(x)}
\overline{y} = \frac{1}{n} \sum_{j=1}^{q} n_{\bullet j} y_{j} = \sum_{j=1}^{q} f_{\bullet j} y_{j}
V(y) \frac{1}{n} \sum_{j=1}^{p} n_{\bullet j} y_{j}^{2} - \overline{y}^{2} = \sum_{j=1}^{q} f_{\bullet j} y_{j}^{2} - \overline{y}^{2}
\sigma(y) = \sqrt{V(y)}$$

Exemple illustratif

Soit le tableau de contingence suivant :

$X \setminus Y$	0	1	2	n _{i∙}
1	6	3	1	$n_{1\bullet}=10$
2	5	5	5	$n_{2\bullet}=15$
n₀j	$n_{\bullet 1} = 11$	$n_{\bullet 2} = 8$	$n_{\bullet 3} = 6$	n = 25

Le tableau de fréquences correspondant est :

$X \setminus Y$	0	1	2	f _i ●
1	0.24	0.12	0.04	$f_{1\bullet} = 0.4$
2	0.44	0.32	0.24	$f_{2\bullet}=0.6$
$f_{ullet j}$	$f_{\bullet 1} = 0.44$	$f_{\bullet 2} = 0.32$	$f_{\bullet 3} = 0.24$	$f_{\bullet \bullet} = 1$

Distributions marginales

Distribution marginale de X

Xi	$n_{i\bullet}$	$f_{i\bullet}$
1	10	0.4
2	15	0.6
Total	25	1

Distribution marginale de X

Уi	$n_{i\bullet}$	f_{iullet}
0	11	0.44
1	8	0.32
2	6	0.24
Total	25	1

- Introduction
- 2 Tableau de contingence
- 3 Distribution conjoint
- 4 Distribution marginale
- 5 Distribution conditionnelle
- 6 Indépendance

Distribution conditionnelle

On peut Considérer la distribution de X (resp. Y) sur une sous population ayant pris la modalité y_j de Y (resp. x_i de X).

On les appelle distributions conditionnelles, notées : $X/Y = y_j$. (resp. $Y/X = x_i$).

 $X/Y = y_j$ prend les modalitées x_1, x_2, \dots, x_p .

 $Y/X = x_i$ prend les modalitées y_1, y_2, \cdots, y_q .

L'effectif de la population ayant pris la modalité y_j de Y (resp. x_i de X) est $n_{\bullet j}$ (resp. $n_{i\bullet}$)

Fréquences conditionnelles

La fréquence conditionnelle de $X/Y=y_j$ (resp. $Y/X=x_i$) est définie par :

$$f_{i/j} = \frac{n_{ij}}{n \bullet j} = \frac{f_{ij}}{f_{\bullet j}}, \ i = \overline{1, p}$$

$$f_{j/i} = \frac{n_{ij}}{n i \bullet} = \frac{f_{ij}}{f_{i \bullet}}, \ j = \overline{1, q}$$

Exemple illustratif

Tableau de contingence :

$X \setminus Y$	0	1	2
1	6	3	1
2	5	5	5

Distribution de
$$X/(Y=y_1=0)$$

x _i	n _{i1}	$f_{i/j=1}$
1	6	0.55
2	5	0.45
Total	11	1

fréquences conditionnelle (exemple illustratif)

	x _i	n _{i2}	$f_{i/j=2}$
Distribution de $X/(Y=1)$	1	3	0.38
Distribution de $\lambda/(T=1)$	2	5	0.62
	Total	8	1
	Xi	n _{i3}	$f_{i/j=3}$
Distribution de $X/(Y=2)$	1	1	0.17
Distribution de $X/(T=2)$	2	5	0.62
	Total	6	1

Caractéristiques numériques des distributions conditionnelles

Moyennes conditionnelles

$$\overline{x} = \frac{1}{n_{\bullet j}} \sum_{i=1}^{p} x_i n_{ij} = \sum_{i=1}^{p} x_i f_{i/j}, \ j = \overline{1, q}$$

$$\overline{y} = \frac{1}{n_{i\bullet}} \sum_{j=1}^{q} y_j n_{ij} = \sum_{j=1}^{p} y_j f_{j/i}, \ i = \overline{1, p}$$

Variances conditionnelles

$$V_{j}(x) = \frac{1}{n_{\bullet j}} \sum_{i=1}^{p} n_{ij} (x_{i} - \overline{x_{j}})^{2}, \ j = \overline{1, q}$$

$$V_{i}(y) = \frac{1}{n_{\bullet i}} \sum_{j=1}^{p} n_{ij} (y_{j} - \overline{y_{i}})^{2}, \ i = \overline{1, p}$$

Ecart type

$$\sigma_j(x) = \sqrt{V_j(x)}$$

 $\sigma_i(y) = \sqrt{V_i(y)}$

Moyenne des moyenne

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{q} n_{\bullet j} \overline{x_j}$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{p} n_{\bullet i} \overline{y_i}$$

- Introduction
- 2 Tableau de contingence
- 3 Distribution conjoint
- 4 Distribution marginale
- 5 Distribution conditionnelle
- 6 Indépendance

Si
$$f_{i/j} = f_{i\bullet}$$
, $i = \overline{1,p}$ et $f_{j/i} = f_{\bullet j}$, $j = \overline{1,q}$ est équivalent à dire que (\Leftrightarrow) X et Y sont indépendantes $\Leftrightarrow f_{ij} = f_{i\bullet} \times f_{\bullet j}$ $\Leftrightarrow n_{ij} = \frac{n_{i\bullet} \times n_{\bullet j}}{n}$

Si
$$f_{i/j}=f_{i\bullet}, i=\overline{1,p}$$
 et $f_{j/i}=f_{\bullet j}, j=\overline{1,q}$ est équivalent à dire que (\Leftrightarrow) X et Y sont indépendantes.

$$\Leftrightarrow f_{ij} = f_{i \bullet} \times f_{\bullet}$$

$$\Leftrightarrow n_{ij} = \frac{n_{i \bullet} \times n_{\bullet j}}{n}$$

Si
$$f_{i/j} = f_{i\bullet}$$
, $i = \overline{1,p}$ et $f_{j/i} = f_{\bullet j}$, $j = \overline{1,q}$ est équivalent à dire que (\Leftrightarrow) X et Y sont indépendantes. $\Leftrightarrow f_{i'} = f_{\bullet j'} \times f_{\bullet j'}$

$$\Leftrightarrow f_{ij} = f_{i\bullet} \times f_{\bullet j}$$
$$\Leftrightarrow n_{ii} = \frac{n_{i\bullet} \times n_{\bullet j}}{2}$$

Si
$$f_{i/j} = f_{i\bullet}$$
, $i = \overline{1,p}$ et $f_{j/i} = f_{\bullet j}$, $j = \overline{1,q}$ est équivalent à dire que (\Leftrightarrow) X et Y sont indépendantes.

$$\Leftrightarrow f_{ij} = f_{i\bullet} \times f_{\bullet j}$$

$$\Leftrightarrow n_{ij} = \frac{n_{i\bullet} \times n_{\bullet j}}{n}$$

Merci de votre attention