Université A.Mira-Béjaia -2^{ème}année Informatique.

Correction de l'Interrogation N^2

Exercice $N^{\circ}1$ (3pt)

Cette femme peut s'habiller de $4 \times 5 \times 3 = 60$ façons. (Principe du produit).

Exercice $N^{\circ}2$ (7pt)

1. On peut supposer que toutes les parties à 2r éléments de l'ensemble des chaussures ont la même probabilité d'être choisies. Cette hypothèse nous conduit à modéliser cette expérience aléatoire par l'espace probabilisé $(\Omega, P(\Omega), P)$, où Ω désigne l'ensemble de toutes les parties à 2r éléments d'un ensemble à 2n éléments et où P est la probabilité uniforme (équiprobabilité). Soit l'évènement w_1 : "il n'y a aucune paire complète parmi les 2r chaussures choisies", alors

$$P(w_1) = \frac{card(w_1)}{card(\Omega)} = \frac{C_n^{2r} \cdot 2^{2r}}{C_{2n}^{2r}}.$$

 C_n^{2r} . Le fait de choisir 2r chaussures, une de chaque paire.

 2^{2r} : Choisir une chaussure de chaque paire.

2. Soit w_2 : "Il y a exactement k paires complètes parmi les 2r chaussures choisies".

$$P(w_2) = \frac{card(w_2)}{card(\Omega)} = \frac{C_n^k \cdot C_{n-k}^{2r-2k} \cdot 2^{2r-2k}}{C_{2n}^{2r}}$$

Tels que:

 C^k_n : désigne le choix des paires complètes. C^{2r-2k}_{n-k} : choisir une chaussure parmi celles qu'on vient de choisir.

Exercice $N^{\circ}3$ (7pt)

1.
$$\frac{C_4^4 C_{48}^1}{C_{52}^5} = \frac{48}{2598960} = 1,8469.10^{-005}$$

2.
$$\frac{C_4^4 C_4^1}{C_{52}^5} = \frac{4}{2598960} = 1,5391.10^{-006}$$

3.
$$\frac{C_4^3 C_4^2}{C_{52}^5} = \frac{24}{2598960} = 9,2345.10^{-006}$$

4.
$$\frac{C_4^1 C_4^1 C_4^1 C_4^1 C_4^1}{C_{52}^5} = \frac{1024}{2598960} = 3,9400.10^{-004}$$