Université de Bouira 2019/2020

Faculté des sciences et des sciences appliquées

Département de Génie-civil

3ième année Licence G.C.

Série de TD N°2

Béton armé

Exercice N°1

a) Compléter le tableau ci-dessous :

f_{c28} (MPa)	16	18	20	22	24	25
f_{t28} (MPa)						
E _{i28} (MPa)						
E _{v28} (MPa)						
$f_{bu}^{(*)}$ (MPa)						
$\overline{\sigma_{bc}}^{(**)}$ (MPa)						

- b) Peut-on effectuer un décoffrage des ouvrages suivants au bout de 5 jours s'ils sont réalisés en béton :
 - $f_{c28} = 16 \text{ MPa}$?
 - $fc_{28} = 20 \text{ Mpa }?$

sachant que les valeurs requises sont :

- $f_{cj} > 3$ MPa pour les voiles et les poteaux
- $f_{ci} > 10$ MPa pour les dalles de faible portée (< 16 x épaisseur)
- $f_{ci} > 12$ MPa pour les dalles de portée moyenne (< 20 x épaisseur)
- (*) Contrainte de compression de calcul du béton à l'ELU, dans le cas général.
- (**) Contrainte de compression du béton à l'ELS

Exercice N°2

Calculer la contrainte de traction due au seul retrait dans la poutre en béton $(30 \text{ x } 40) \text{ cm}^2$ de portée 4 m. Les appuis sont fixes et le retrait relatif est évalué à $0.3 \ 10^{-3}$. f_{ej} =20 MPa. Conclure.

Exercice N°3

- Déterminer la contrainte de traction dans un acier HAfeE500 pour un allongement de 1.74 10⁻³.
- Calculer le coefficient de sécurité appliqué. En déduire la contrainte de traction de calcul à l'ELU f_{su} .
- Calculer la contrainte de traction dans l'acier à l'ELS : en fissuration préjudiciable, très préjudiciable et peu nuisible.