Année universitaire : 2014/2015 2^{ième} année licence – Informatique module : Théorie des langages

Examen de Rattrapage

Le 08/04/2015 – Durée 1h 30mn – documents non autorisés

EXERCICE 1: (5 pts)

- 1) Soit le mot $x = ((acb)^R.cbaa)^R$ (α^R désigne le reflet miroir de α)
 - 1-1) Donner la chaîne de caractères à laquelle x est égal. (0,5 pt)
 - 1-2) Quelle est la valeur de |x|? (0,5 pt)
 - 1-3) Donner un préfixe propre de x contenant au moins deux lettres 'a'. (0,5 pt)
 - 1-4) Donner la sous-chaîne de x qui commence par 'b' et se termine par 'a'. (0,5 pt)
- 2) Soit V un alphabet ; et w un mot de V* de longueur n.
 - 2-1) Quel est le nombre de préfixes de w? (1 pt)
 - 2-2) En supposant que toutes les lettres de w sont différentes, quel est le nombre de sous-chaînes de w ? (1 pt)
 - 2-3) Donner une condition nécessaire sur n pour que toutes les lettres de w soient différentes. (1 pt)

EXERCICE 2: (8 pts)

Trouver pour chacun des langages suivants une grammaire qui l'engendre :

- 1) $L_1 = \{ a.b^{2n}.a / n \ge 0 \}$; (2 pts)
- 2) $L_2 = \{ a^{2n} b^{3m} / n \ge 1, m \ge 0 \}$; (2 pts)
- 3) $L_3 = \{ a^n b^m c^k / 0 \le n \le m \le k \}$ (2 pts)
- 4) $L_4 = \{ a^i b^j c^k / k = max(i,j) \}.$ (2 pts)

EXERCICE 3:(7 pts)

Soit L_1 le langage des mots de $\{a, b\}^*$ tel que dans chaque mot w de L_1 , l'une, au moins, des deux premières lettres de w est un « b » ; et le langage $L_2 = \{aab, aba\}$.

- 1) Construire un automate d'états finis simple qui accepte L_1 . (1,5 pts)
- 2) Construire un automate d'états finis simple qui accepte L_2 . (1,5 pts)
- 3) Construire un automate d'états finis simple qui accepte $L_1 \cup L_2$. (1,5 pts)
- 4) Rendre l'automate de 3) déterministe, s'il ne l'est pas. (1,5 pts)
- 5) Donner l'automate d'états finis qui accepte le complémentaire de $L_1 \cup L_2$. (1 pt)

Bon courage!

Bref corrigé : (Rattrapage de ThL – L2 informatique – 2014/2015)

EX.1:

- 1) 1-1) x = aabcacb
 - 1-2) |x| = 7
 - 1-3) aab
 - 1-4) bca
- 2) On a |w| = n.
 - 2-1) Le nombre de préfixes de w est égal à n+1.
 - 2-2) Lorsque toutes les lettres de w sont différentes, le nombre de sous-chaînes de w est : $1 (\epsilon) + nbre de s/chaînes de longueur <math>1 + nbre de s/chaînes de lgr <math>2 + \ldots + nbre de s/c$ de $lgr n = 1 + n + (n-1) + \ldots + 1 = 1 + n(n+1)/2$
 - 2-3) Pour que les lettres de w soient toutes différentes les unes des autres, il nécessaire que : $n \le Card(V)$.

EX.2:

- 1) Une grammaire pour L_1 : $G_1 = (\{a, b\}, \{S, A\}, S, P_1)$
 - $P_1: S \rightarrow aAa ; A \rightarrow bbA \mid \epsilon$
- 2) Une grammaire pour L_2 : $G_2 = (\{a, b\}, \{S\}, S, P_2)$

$$P_2: S \rightarrow aaS \mid Sbbb \mid aa$$

3) Une grammaire pour L_3 : $G_3 = (\{a, b, c\}, \{S, A, B, C, D, E\}, S, P_3)$

$$P_3: S \to ACD$$

$$C \rightarrow aCB \mid B \mid E \mid \epsilon$$

$$B \rightarrow bBE \mid bE$$

$$Eb \rightarrow bE$$
; $E \rightarrow EE$; $ED \rightarrow cD$; $Ec \rightarrow cc$

$$Aa \rightarrow aA$$
; $Ab \rightarrow bA$; $Ac \rightarrow cA$; $AD \rightarrow \epsilon$

4) $L_4 = L' \cup L''$, où : $L' = \{ a^i b^j c^j / i \le j \}$ et $L'' = \{ a^i b^j c^i / i \ge j \}$

Une grammaire pour L_4 : $G_4 = (\{a, b, c\}, \{S, S_1, A, B, S_2, C, D, E\}, S, P_4)$

$$P_4: S \rightarrow BS_1 \mid S_2$$

$$S_1 \rightarrow AbS_1c \mid \epsilon$$

$$BA \rightarrow Ba$$
; $aA \rightarrow aa$; $bA \rightarrow Ab$; $A \rightarrow \epsilon$

$$B \rightarrow \epsilon$$

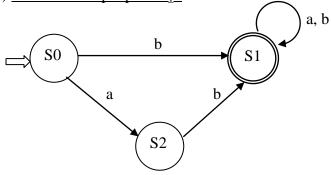
$$S_2 \rightarrow aES_2c \mid C$$

$$E \rightarrow \varepsilon$$
; $Ea \rightarrow aE$; $EC \rightarrow Cb$

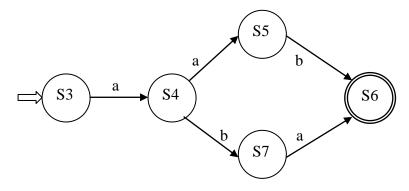
$$C \rightarrow \epsilon$$

EX. 3:

1) Automate simple pour L₁:



2) Automate simple pour L₂:



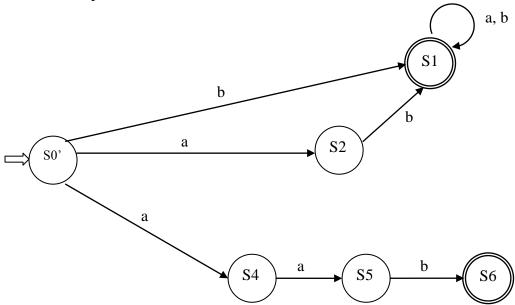
3) Automate simple pour $L_1 \cup L_2$:

Puisque aba $\in L_1$ alors $L_1 \cup L_2 = L_1 \cup \{aab\}$.

Automate semi-généralisé :



Automate simple :



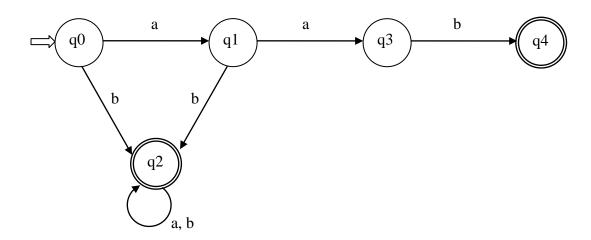
Remarque : On n'a pas représenté les états S3 et S0 car ils sont devenus inaccessibles.

4) <u>Déterminisation</u>:

Table de transition de l'automate déterministe équivalent :

$\langle S0' \rangle = q0$	<s2,s4></s2,s4>	<s1></s1>
<\$2,\$4> = q1	<s5></s5>	<s1></s1>
$\leq S1 \geq q2$	<s1></s1>	<s1></s1>
$\langle S5 \rangle = q3$	/	<s6></s6>
\leq S6> = q4	/	/

Automate déterministe :

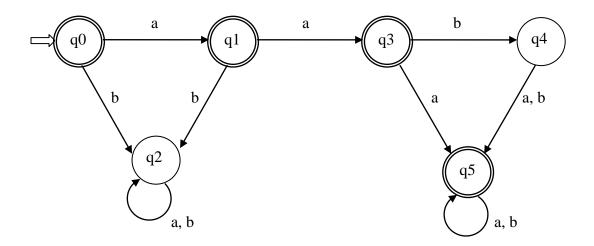


5) <u>Automate du complémentaire de $L_1 \cup L_2$:</u>

Pour trouver l'automate du complémentaire de $L_1 \cup L_2$, on procède comme suit :

- i) on considère l'automate simple déterministe de $L_1 \cup L_2$ obtenu en 4) ;
- ii) on le complète (en ajoutant un état puits q5) ;
- iii) on inverse les états finaux et non finaux dans l'automate de ii).

On obtient:



Remarque: On peut supprimer l'état q2 car il devenu un état puits.

----- <u>Fin du corrigé du Rattrapage de Théorie des Langages</u> -------------------<u>L2 informatique – U.M.M.T.O – 2014/2015</u> ------