Université de M'hamed Bouguerra Boumerdès Faculté des sciences Département d'Informatique

Module : Théorie des Langages

Année : 2015-2016 Responsable : Mme OTMANINE

Filière: LI (S3)

Document: ETLD Durée: 1H30

Exo1: (5.5 pts)

Soit deux langages L1 et L2 définis comme suit:

L1 = { b (aba)ⁿ, n>=0} L2= { a (ba)^m b, m>=0}

1. Donner deux mots de longueur différente acceptés par chaque langage.

2. Construire pour chaque langage l'automate d'états finis correspondant.

3. Déduire l'automate acceptant le langage L3=L1. L2 et son expression régulière.

Exo2: (2 pts)

Montrer que le langage suivant n'est pas régulier :

 $L = \{a^n bb c^n, n > = 0\}$

Exo3: (7.5 pts)

Soit l'automate d'états finis A<V, S, F, S0, T> définit par : V= {a, b}; S= {S0, S1, S2, S3, S4, S5, S6}; F= {S2, S6}

T	а	b	3
SO	/	1	S1, S4
S1	S2	1	1
S2	S3	S2	1
S3	/	S2	1
S4	S6	S4, S5	1
S5	/	S6	1
S6	/	1	1

- M. Trouver l'expression régulière du langage L(A).
- 2 Donner l'automate déterministe équivalant à A.
- 3. Donner la grammaire régulière à droite G tel que L(G)=L(A).

Exo4: (5 pts)

Soit la grammaire algébrique G < T, N, S, P> définie par :

 $T = \{a, b\}; N = \{S, T\};$

P: S \rightarrow aSa | aTa | T \rightarrow aTa | bTb | ϵ

- 1. Montrer que cette grammaire est ambiguë.
- 2. Mettre cette grammaire sous forme normale de Chomsky (FNC).

Remarque: l'exo3 sera noté comme test 2.