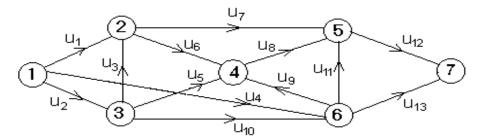
Université A/Mira de Béjaia Département d'Informatique 3^e année Licence Académique (2012/2013).

Examen de rattrapage de Théorie des Graphes Durée 2 heures

Date: 18/04/2013

Exercice 1. (06 pts) Soit le graphe suivant :



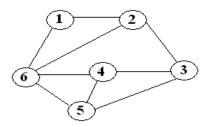
- 1. Déterminer sa matrice d'adjacence puis étudier ses propriétés;
- 2. Est-il sans circuit? si oui, donner sa mise à niveau;
- 3. Déterminer son noyau s'il existe;
- 4. Donner une base fondamentale de cycles et une base fondamentale de cocycles du graphe.

Exercice 2. (04 pts) Soit G = (X, U) un graphe où |X| = n et |U| = m.

- 1. Montrer que si G est un 1-graphe fortement connexe alors il possède m-n+1 circuits élémentaires indépendants.
- 2. Montrer que si G est sans circuits alors il admet n-p cocircuits indépendants (p est le nombre de composantes connexes de G).

Exercice 3. (04 pts) Soit G = (X, U) un graphe simple (non orienté) et k un nombre entier. Le graphe G est appelé un k-arbre, s'il possède un sous ensemble de k arêtes $B \subset U$ tel que : le graphe partiel $G' = (X, U \setminus B)$ soit un arbre dans G.

- 1. Montrer que les propriétés suivantes sont équivalentes :
 - a- G est un k-arbre
 - b- G est connexe et possède (n+k-1) arêtes
 - c-G est connexe et par suppression d'un sous ensemble quelconque de k+1 arêtes n'est plus connexe.
- 2. En déduire que le graphe suivant est un 4-arbre

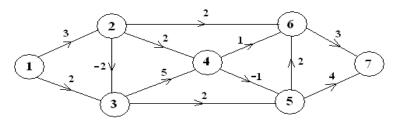


Exercice 4. (06 pts) Soit R = (X, U, d) un réseau où X est l'ensemble des sommets, U est l'ensemble des arcs et d est une application définie de U dans \mathbb{R} qui associe à chaque arc $u \in U$ un nombre $d(u) \in \mathbb{R}$ appelé longueur de l'arc. Nous utiliserons les notations suivantes :

- \bullet S: ensemble des sommets dont on a calculé la plus courte distance;
- $\bar{S} = X S$;
- A: arborescence des plus courtes distances;
- Π est l'application définie de X dans \mathbb{R} qui associe à chaque sommet $x \in X$ son potentiel $\Pi(x) \in \mathbb{R}$ qui représente la plus courte distance (longueur du plus court chemin) de s à x (s un sommet fixé).

Considérons l'algorithme suivant :

- (0) On pose $S = \{s\}, \Pi(s) = 0, A = \emptyset;$
- (1) On cherche un sommet $y \in \bar{S}$ tel que $\Gamma^{-1}(y) \subset S$;
 - Si un tel sommet n'existe pas : soit S=X, soit s n'est pas une racine, terminer ;
 - Si un tel sommet existe : aller en (2);
- (2) On calcule $\Pi(y) = \min_{\{u \in U: T(u) = y\}} \{\Pi(I(u)) + d(u)\} = \Pi(I(\tilde{u})) + d(\tilde{u});$ On pose $A = A \cup \{\tilde{u}\}, \ S = S \cup \{y\} \text{ et aller en } (1).$
- 1. Que fait cet algorithme?
- 2. Appliquer le (l'algorithme) au graphe suivant en prenant s=1.



* Afud igerrzen * Bon courage *