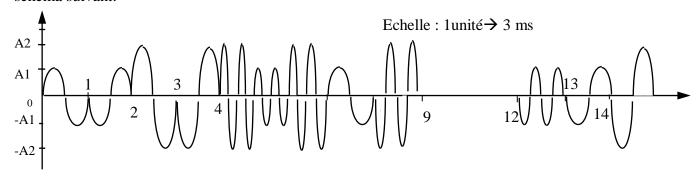

Département informatique USTHB L3 Académique Année 2012/2013 – S5


Epreuve de moyenne Durée Durée : 1h30

Exercice 1 (9 points)

Deux réseaux locaux distants *Net*₁ et *Net*₂ sont reliés par l'intermédiaire d'une ligne Haute vitesse et deux multiplexeurs/démultiplexeurs (MUX1 et MUX2). Les MUX/DEMUX, se basent sur un multiplexage temporel synchrone pour l'envoi des messages entre les deux réseaux.

Trois stations du réseau Net₁ St₁, St₂ et St₃, reliées à MUX1, communiquent avec un ordinateur central ORD du réseau Net₂, via des modems de même rapidité et de même modulation. Le signal envoyé sur la ligne Haute vitesse et correspondant à ces communications est donné par le schéma suivant.

- 1) En supposant qu'on envoie 3 états multiplexeurs par quantum, donnez sa valeur.
- 2) Donnez les messages correspondants à chaque machine St_i en supposant que le message représenté par le signal envoyé sur la ligne principal est

111 001 000 101 100 010 100 111 110 011 001 101

- 3) En déduire la valence du signal et donner le type de modulation utilisé par les modems.
- 4) Calculer la rapidité de modulation des modems reliés aux stations St_i.
- 5) Représentez le message de St_3 en codage Manchester avec la même valence.

On suppose que St_3 utilise un codage polynomial C(9,3) pour le contrôle d'erreur avec $G(x) = x^6 + x^4 + x^2 + x + 1$.

- 6) Donner le circuit correspondant à G(x).
- 7) Coder le message 100 001 010 en utilisant le circuit.
- 8) Donner les matrices de codage et de décodage du code linéaire équivalent.

Exercice 2: (11 points)

Un jeune informaticien a été recruté par une entreprise OMEGA pour la mise en place et administration d'un réseau informatique au niveau de son siège à Alger. L'entreprise dispose de 50 ordinateurs et deux imprimantes à grand débit dotées d'interfaces réseau.

- 1. Le premier souci de l'entreprise OMEGA est de mettre en place un premier réseau local. Elle dispose d'un ensemble d'équipements reçu comme don de l'ONU: Un câble coaxial épais avec une douzaine de MAU, deux Switchs de 24 ports, ainsi que du câblage en paires torsadées et 1 câble parallèle pour connexion en cascade. L'entreprise OMEGA souhaite raccorder son réseau local au réseau Internet. Elle installe un serveur web www.omega.dz, un serveur de messagerie mail.omega.dz et 4 serveurs de données serv1, serv2, serv3, et serv4. De plus, l'entreprise acquiert un routeur à trois ports et une liaison ADSL pour la connexion au réseau Internet.
 - a. Proposez une architecture globale de telle sorte à intégrer tous les équipements en précisant les normes utilisées (tous les équipements et tous les ports doivent être utilisés).
 - b. Proposez un plan d'adressage pour le réseau d'Alger avec découpage en sous réseaux logiques.
- 2. L'entreprise OMEGA a deux sites annexes dans les wilayas de Constantine et Oran. Elle souhaite raccorder ces deux sites à celui d'Alger. Le site d'Oran contient un réseau 100 base TX et un réseau FDDI de 10 machines chacun. Celui de Constantine est un réseau 10 Base F d'une vingtaine de machines.
 - a. Quels sont les nouveaux équipements pour chacun des sites et éventuellement que faut il revoir pour le siège central d'Alger afin d'établir cette interconnexion ?
 - b. Représenter la nouvelle architecture du réseau global.
 - c. L'informaticien décide de garder le même adressage du réseau d'Alger attribuée en 1.b). Complétez le plan d'adressage en conséquence de telle manière à adresser le reste du réseau.
 - d. Donnez les tables de routage utilisées dans le réseau d'interconnexion global.
- 3. En supposant les MTU suivants : FDDI est de 4000 ; 10 Base F est de 1500 ; et Point à point est de 2000,
 - a) Donner les résultats des opérations que subit un paquet de 3600 octet envoyé par une machine du réseau FDDI vers une machine du réseau 10 Base F.

Bon courage.

CORRECTION

Exercice 1 (9,5 points)

Quest 1) Un état multiplexeur dure une unité de temps soit $t_{mux}=3$ ms (0,25 pts) Q= $3 \times t_{mux}=9$ ms (0,25 pts)

Ouest 2)

St₁ envoie durant le premier quantum : 111 001 000 (**0,25 pts**)

St₂ envoie durant le second et le quatrième quantum : 101 100 010 011 001 101 (**0,25 pts**)

St₃ envoie durant le troisième quantum : 100 111 110 (**0,25 pts**)

Quest 3) La valence du signal:

Un quantum contient 3 états qui permettent d'envoyer 9 bits.

Donc n = 3 bits (0,25 pts) et $V = 2^n = 8$ états. (0,25 pts)

Le signal comporte deux amplitudes (A1, A2), (0,25 pts)

deux phases (0, π)

deux fréquences (f1, 2f1) (0,25 pts)

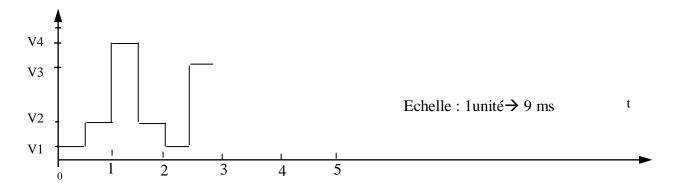
 $V=2 \times 2 \times 2 = 8$ modulation par amplitude par phase et par fréquence (0,25 pts)

Quest 4) Calculons la rapidité:

Rmux = $1/t_{mux}$ = 333 bauds (0,25 pts)

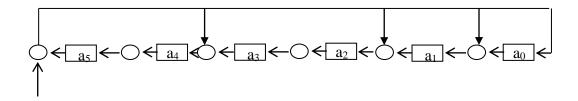
 $R_{sti} = Rmux/3 = 111 \text{ bauds}$ (0,25 pts)

Quest 4) D'après le signal on a 8 états


La durée d'un état modem t= 1/111= 9 ms (0,25 pts)

Nous considérons 4 tensions V1, V2, V3, V4 pour la représentation manchester, puis nous associons pour chaque combinaison sur 3 bits une configuration possible, par exemple :

(0.25 pts)


000
$$(V2 \rightarrow V1)$$
 010 $(V2 \rightarrow V3)$ 001 $(V3 \rightarrow V1)$ 011 $(V2 \rightarrow V4)$ 100 $(V1 \rightarrow V2)$ 101 $(V3 \rightarrow V2)$ 110 $(V1 \rightarrow V3)$ 111 $(V4 \rightarrow V2)$ (**0.5 pts**)

Message de st3 : 100 111 110 soit (V1 \rightarrow V2) (V4 \rightarrow V2) (V1 \rightarrow V3)

(1 points)

Ques 5) on a à faire à un code C(9,3) le circuit correspondant à G(x) est : (1 pts)

Ques 6)

Codons . 100 001 010

Xi	x_i+a_1	\mathbf{a}_0	a_1	\mathbf{a}_2	\mathbf{a}_3	$\mathbf{a_4}$	\mathbf{a}_5
		0	0	0	0	0	0
1	1	1	1	1	0	1	0
0	0	0	1	1	1	0	1
0	1	1	1	0	1	0	0

100 **001011** (**0,75** pts)

Xi	x_i+a_1	\mathbf{a}_0	a_1	\mathbf{a}_2	a ₃	a 4	a ₅
		0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	1	1	1	1	0	1	0
0	0	0	1	1	1	0	1

010 **101110** (**0,75 pts**)

Xi	x_i+a_1	\mathbf{a}_0	$\mathbf{a_1}$	\mathbf{a}_2	\mathbf{a}_3	a ₄	\mathbf{a}_5
		0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	1	1	1	1	0	1	0

001 **010111** (**0,75** pts)

Ques 7)

G (3,9) est la juxtaposition des mots précédents

100 001011 G 010 101110 001 010111 (**0,75 pts**)

H (9, 6)

001011 H 101110 010111 100000 010000 001000 000100 000010 000001 (0,5 pts)

Exercice 2 (10,5 points)

Ques 1.a) 2 pts

Ques 1.b)

On a trois réseaux, donc on prend trois bits pour le sous réseaux

Pour adresser les sous réseaux une adresse de classe B est nécessaire vu le nombre de machines nécessaire par sous réseau (32 maximum pour une adresse de classe C)

Nous considérons l'adresse 140.150.0.0 (0,5 pts)

3 réseaux à adresser ; 3 bits sont utilisés pour le masque. Le masque est : 255.255.224.0 **(0,5 pts)**

Les plages des adresses pour les réseaux (0,5 pts)

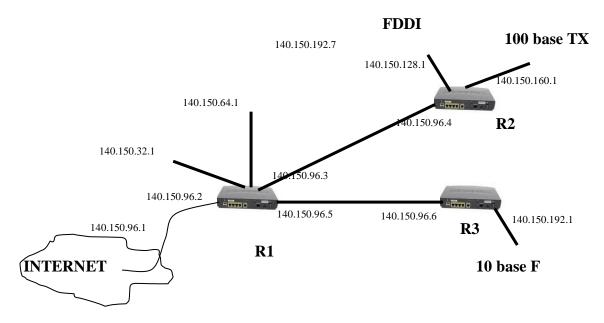
Réseau 1 : (001) : [140.150.32.0 ; 140.150.63.255]

Réseau 2 : (001) : [140.150.64.0 ; 140.150.95.255]

Point à points (011) : [140.150.96.0 ; 140.150.127.255]

Ques 2.a) Il faut 2 routeurs pour chaque site et remplacer le retour d'alger par un routeur à 5 ports (0,5 pts)

Ques 2.b) architecture (1,5pts) voir plus haut


Ques 2.c) (0,5 pts)

FDDI (100): [140.150.128.0; 140.150.159.255]

100 base TX (101): [140.150.160.0; 140.150.191.255]

10 base F (110): [140.150.192.0; 140.150.223.255]

Ques 2.d) (1 pts)

Ques 2.e) Les tables de routage : (1,5 pts)

	<i>R1</i>	R2	R3
@ dest.	Voisin	Voisin	Voisin
140.150.32.0	140.150.32.1	140.150.96.3	140.150.96.5
140.150.64.0	140.150.64.1	140.150.96.3	140.150.96.5
140.150.128.0	140.150.96.4	140.150.128.1	140.150.96.5
140.150.160.0	140.150.96.4	140.150.160.1	140.150.96.5
140.150.192.0	140.150.96.6	140.150.96.3	140.150.192.1
Autres	140.150.96.1	140.150.96.3	140.150.96.5

Ques 3)

- Première fragmentation entre (R2 et R3) MTU =2000 1er fragment : taille = 2000; A=0; B=1 et Depl= 0 2nd fragment : taille = 1620; A=0; B=0 et Depl= 1980 (0,5 pts)

- Seconde fragmentation MTU =1500

Issu du premier fragment, on obtient deux nouveaux fragments (0,75 pts)

1er fragment : taille = 1500 ; A=0 ; B=1 et Depl= 0 2er fragment : taille = 520 ; A=0 ; B=1 et Depl= 1480

Issu du second fragment, on obtient deux nouveaux fragments (0,75 pts)

3nd fragment : taille = 1500 ; A=0 ; B=1 et Depl= 1980 4nd fragment : taille = 120 ; A=0 ; B=0 et Depl= 3460