Université 08 Mai 45 de Guelma Département d'Informatique

Guelma, le 09 Janvier 2011

Durée de la Micro Interrogation : Une (1h00) Heurs

Exercice 1

Répondre par vrai ou faux aux questions suivantes, sans donner une justification.

- 1. L'ensemble des graphes orientés finis est dénombrable.
- 2. Tout langage fini est décidable.
- 3. Tout langage sur un alphabet à une lettre est décidable.
- 4. Étant donnés une machine de Turing M, un mot w et un entier k, on peut décider si M accepte w en au plus k étapes de calcul.
- 5. Étant données deux machines de Turing M_1 et M_2 , on peut décider si $L(M_1) \subseteq L(M_2)$.
- 6. Il existe une infinité de fonctions récursives totales qui ne sont pas primitives récursives.
- 7. Le langage des mots sur l'alphabet ASCII représentant un programme PASCAL syntaxiquement correct est décidable.
- 8. Le complément de tout ensemble récursivement énumérable est aussi récursivement énumérable.

Exercice 2

Soit $\Sigma = \{0, 1\}$ un alphabet et soit x un mot de Σ^* .

Construisez des machines de Turing telles que :

- 1. La machine accepte x Ssi x s'écrit yy^{-1} pour un certain $y \in \Sigma^*$.
- 2. La machine accepte x Ssi x s'écrit yy pour un certain $y \in \Sigma^*$.

Exercice 3

Donnez le lien(s) (Relation) entre les concepts suivants :

- ✓ Langage régulier ;
- ✓ Ensemble Récursif ;
- ✓ Langage accepté ;
- ✓ Langage décidable ;
- √ Langage Semi décidable ;
- √ Expression régulière ;
- ✓ Fonction calculable;
- ✓ Ensemble récursivement énumérable ;
- ✓ Fonction partiellement calculable;

Bonne Chance

Université 08 Mai 45 de Guelma Département d'Informatique

Guelma, le 09 Janvier 2011

Durée de la Micro Interrogation : Une (1h00) Heurs

Exercice 1

Répondre par vrai ou faux aux questions suivantes, sans donner une justification.

- 1. L'ensemble des graphes orientés finis est dénombrable.
- 2. Tout langage fini est décidable.
- 3. Tout langage sur un alphabet à une lettre est décidable.
- 4. Étant donnés une machine de Turing M, un mot w et un entier k, on peut décider si M accepte w en au plus k étapes de calcul.
- 5. Étant données deux machines de Turing M_1 et M_2 , on peut décider si $L(M_1) \subseteq L(M_2)$.
- 6. Il existe une infinité de fonctions récursives totales qui ne sont pas primitives récursives.
- 7. Le langage des mots sur l'alphabet ASCII représentant un programme PASCAL syntaxiquement correct est décidable.
- 8. Le complément de tout ensemble récursivement énumérable est aussi récursivement énumérable.

Exercice 2

Soit $\Sigma = \{0, 1\}$ un alphabet et soit x un mot de Σ^* .

Construisez des machines de Turing telles que :

- 3. La machine accepte x Ssi x s'écrit yy⁻¹ pour un certain $y \in \Sigma^*$.
- 4. La machine accepte x Ssi x s'écrit yy pour un certain $y \in \Sigma^*$.

Exercice 3

Donnez le lien(s) (Relation) entre les concepts suivants :

- ✓ Langage régulier ;
- ✓ Ensemble Récursif;
- ✓ Langage accepté ;
- ✓ Langage décidable ;
- ✓ Langage Semi décidable ;
- ✓ Expression régulière ;
- ✓ Fonction calculable ;
- ✓ Ensemble récursivement énumérable ;
- ✓ Fonction partiellement calculable;

Bonne Chance

Micro Interrogation Logique Mathématique 2 ^{eme} Années S