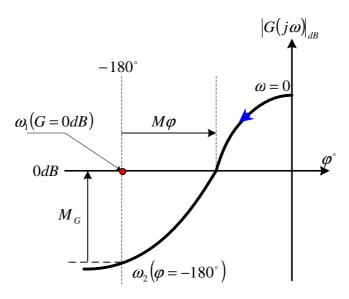


Chapitre 5 : Analyse et Synthèse des Systèmes Asservis Linéaires Continus par l'Abaque Nichols-Black

I. Analyse par l'Abaque Nichols-Black

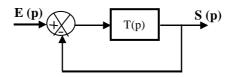
I.1. Critère de Rivers dans le plan de Black

Si en se déplaçant sur le <u>lieu de Black du système en boucle ouverte</u> dans **le sens des** ω**croissants** on laisse le *point critique* (-180°, 0 dB) à droite. <u>Le système en boucle fermée</u> est stable.



I.2. Présentation des abaques de Nichols-Black

Soit le schéma bloc d'un système Asservi linéaire à retour unitaire.



La FTBO est |T(p)|, soit $T(j\omega) = |T(j\omega)| e^{j\varphi}$

La FTBF est :
$$H(p) = \frac{S(p)}{E(p)}$$
 $\Rightarrow H(p) = \frac{T(p)}{1 + T(p)}$

Soit
$$Arg(H(j\omega)) = Cte$$

$$H(j\omega) = \frac{T(j\omega)}{1 + T(j\omega)}$$

$$\Rightarrow H(j\omega) = \frac{\left|T(j\omega)\right| \cdot e^{j\varphi}}{1 + \left|T(j\omega)\right| \cdot e^{j\varphi}} \Rightarrow H(j\omega) = \frac{\left|T(j\omega)\right| (\cos\varphi + j\sin\varphi)}{1 + \left|T(j\omega)\right| (\cos\varphi + j\sin\varphi)}$$

Soit
$$H(j\omega) = |H(j\omega)| \cdot e^{j\psi}$$

$$\Rightarrow |H(j\omega)| = \frac{|T(j\omega)|}{\sqrt{(1+|T(j\omega)|\cos\varphi)^2 + (|T(j\omega)|\sin\varphi)^2}}$$

$$\Rightarrow |H(j\omega)| = \frac{|T(j\omega)|}{\sqrt{1 + |T(j\omega)|^2 + 2|T(j\omega)|\cos\varphi}}$$
 (a)

$$\Rightarrow Arg\left(H(j\omega)\right) = \varphi - arctg\left(\frac{|T(j\omega)|\sin\varphi}{1 + |T(j\omega)|\cos\varphi}\right)$$
 (b)

Les équations (a) et (b) permettent, à partir du gain et de la phase du système en boucle ouverte, de déterminer le gain et la phase du système bouclé à retour unitaire. Les calculs sont souvent longs et fastidieux.

Une solution graphique consiste à utiliser les abaques de black Nichols.

Les courbes isogains et isophases tracées sur l'abaque de Black permettent à chaque point du lieu de Black de la transmittance $T(j\omega)$ d'associer le gain et la phase de $H(j\omega)$.

I.3. Utilisation des abaques

On trace sur l'abaque utilisé ou sur une feuille de papier transparente posée sur l'abaque, le lieu de transfert relatif à la FTBO $T(j\omega)$. On gradue cette courbe en fonction de ω . Ce lieu coupe les faisceaux de courbes $\left|H(j\omega)\right|_{dB}=Cte$ et $Arg(H(j\omega))=Cte$ de l'abaque. On note alors, pour diverses valeurs de ω , les valeurs de $\left|H(j\omega)\right|_{dB}$ et $Arg(H(j\omega))$.

I.4. Caractéristiques prélevées sur l'abaque :

a. Marge de gain MG:

C'est l'écart en gain par rapport à 0 dB lorsque le déphasage est de -180°.

$$MG_{dB} = -20 \log |T(j\omega_A)|$$

 $avec: Arg(T(j\omega_A)) = -\pi$

b. Marge de Phase : $M\phi$

C'est l'écart en phase par rapport à -180° lorsque le gain du système en boucle ouverte est égal à 1 (0dB)

$$M\varphi = Arg(T(j\omega_B)) + \pi$$

 $avec: |T(j\omega_B)|_{dB} = 0$

c. Le gain statique en boucle ouverte :

pour $\omega = 0$, lu directement sur l'axe des $|T(j\omega)|_{dB}$.

d. Le gain statique en boucle fermée :

lu directement pour $\omega = 0$, sur la courbe isogain.

e. La pulsation de résonance en boucle fermée $\omega_{\scriptscriptstyle R}$

la pulsation de résonance correspondant au maximum du module de la FTBF $\left|H\left(j\omega\right)\right|_{\max}$.

Le module de la FTBO $T(j\omega)$ est alors tangent au contour $|H|_{\max}$ pour la valeur ω_R de ω .

f. Le facteur de résonance :

$$Q = |H(j\omega)|_{\max} - |H(0)|$$

g. Le pic de résonnace : MP

$$MP = \left| H_{\text{max}} \right|_{dB} - \left| H \left(0 \right) \right|_{dB}$$

$$MP = 20.Log_{10} Q$$

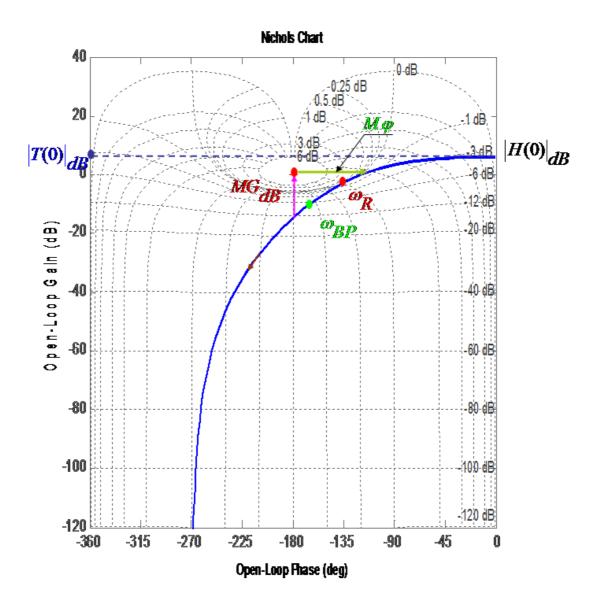
h. La pulsation de coupure à -3dB : $\omega_{_{\!RP}}$

la pulsation pour laquelle la courbe $\left|T(j\omega)\right|_{dB}=f(\arg(T(j\omega)))$ coupe la courbe isogain : $\left|H(0)\right|_{dB}-3dB$.

Exercice 1:

Soit le lieu de Black d'un système en boucle ouverte. Ce système est placé dans une chaine d'asservissement à retour unitaire.

Déterminer les caractéristiques du système en boucle fermée.



%%% n=[2]; d=[1 4 3 1]; h=tf(n,d); nichols(h); grid %%%%

$$MG_{dB} = 14,5dB$$

$$M\varphi = 66^{\circ}$$

$$\left|T(0)\right|_{dB} = 5 \, dB$$

$$\left|H(0)\right|_{dB} = -3,2dB$$

$$\omega_R = 1,33 \, rad / s$$

$$\left|H_{\max}\right|_{dB} = 1dB$$

$$MP = \left| H_{\text{max}} \right|_{dB} - \left| H \left(0 \right) \right|_{dB}$$

$$MP = 1 - (-3, 2) = 4,2dB$$

$$\omega_{BP} = 1,38 \, rad / s$$