
ELECTRONIQUE FONDAMENTALE 02 2019/2020

Solution série 5 Oscillateurs sinusoïdaux

Exercice 01

Le schéma ci-dessous représente un oscillateur sinusoïdal (système bouclé), constitué d'une chaîne directe A(p) (l'amplification) et d'un quadripôle de réaction B(p).

1) La chaîne directe est toujours construite autour d'un dispositif amplificateur.

	L'amplificateur peut être à base d'un AOP ou à base d'un transistor (JFET par exemple)
VRAI	Si le transistor est un bipolaire la contre réaction peut être à base de quartz

2) La chaîne de retour peut être active.

	La chaîne de retour doit être passive (quadripôle de réaction)
FAUX	

3) Le système oscille à une fréquence f_0 telle que $|A(j\omega_0).B(j\omega_0)| = 1$.

	Le système oscille à une fréquence f_0 , si la condition d'entretien des oscillations est
VRAI	$ \text{v\'erifi\'ee} A(j\omega_0).B(j\omega_0) = 1$

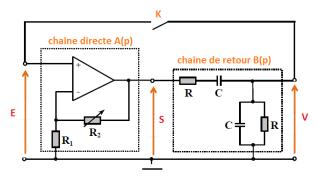
4) L'amplitude de l'oscillation ne dépend que de la chaîne directe A(p).

	C'est l'amplificateur A de la chaîne directe qui définit l'amplitude de l'oscillation
VRAI	

5) La fréquence d'oscillation f_0 ne dépend que de la chaîne directe A(p)

FAUX	La condition d'entretien des oscillations s'écrit $ A(j\omega_0).B(j\omega_0) =1$. Donc les deux chaînes A et B interviennent pour la détermination de la fréquence d'oscillation f_0	
------	--	--

6) Un bon oscillateur est un oscillateur dont la fréquence est très stable.


	La stabilité de la fréquence d'oscillation est une condition nécessaire pour la qualité d'un
VRAI	oscillateur sinusoïdal.

7) La chaîne de retour contient toujours une inductance.

	La chaîne de retour peut être constituée des quadripôles : RC, LC, RL, RLC ou à base
FAUX	de Quartz.

Exercice 02

1- Le schéma équivalent qui met en évidence la chaîne directe (AOP) et la chaîne de retour est donné cidessous :

2- La fonction de transfert de la chaîne directe et celle de la chaîne de retour :

• La fonction de transfert de la chaîne directe A(p)

$$A(p) = \frac{S(p)}{E(p)} = 1 + \frac{R_2}{R_1}$$

• La fonction de transfert de la chaîne de retour B(p)

$$B(p) = \frac{V(p)}{S(p)} = \frac{Z_2}{Z_1 + Z_2} \text{ avec } Z_1 = \frac{1 + RC_P}{RC_P} \text{ et } Z_2 = \frac{R}{1 + RC_P} \text{ alors on aura} : B(p) = \frac{RC_P}{1 + 3RC_P + (RC_P)^2}$$

3- Les conditions que doit remplir le circuit pour entretenir des oscillations :

Conditions d'oscillation : lorsqu'on ferme l'interrupteur K : V(p) = E(p)

$$A(p)B(p)=1$$

$$A(p)B(p) = 1 = \left(1 + \frac{R_2}{R_1}\right)\left(\frac{RC_P}{1 + 3RC_P + (RC_P)^2}\right) = 1 \implies \left(1 + \frac{R_2}{R_1}\right) = 3 + RC_P + \frac{1}{RC_P}$$

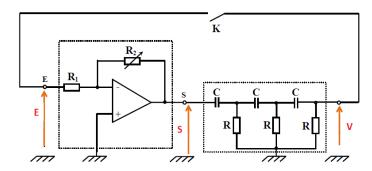
En remplaçant p par $j\omega$ on aura :

$$\left(1 + \frac{R_2}{R_1}\right) = 3 + j \left(RC\omega - \frac{1}{RC\omega}\right)$$

En séparant la partie réelle et la partie imaginaire et par identification, on aura :

La partie réelle :
$$\left(1 + \frac{R_2}{R_1}\right) = 3$$
 et la partie imaginaire $RC\omega - \frac{1}{RC\omega} = 0$

Condition d'auto-oscillation sur les résistances :


 R_2 =2 R_1 (l'oscillation sinusoïdale prend naissance lorsque $R_2 \ge 2R_1$)

Condition d'auto oscillation sur la fréquence d'oscillation :

$$\omega_{oscill} = \frac{1}{RC} \implies f_{oscill} = \frac{1}{2\pi RC}$$

Exercice 03

Soit le montage oscillateur déphaseur représenté ci-dessous (réseau déphaseur RC).

On donne la fonction de transfert de la chaîne de retour B(p):

$$B(p) = \frac{(RCp)^3}{1 + 5RCp + 6(RCp)^2 + (RCp)^3}$$

1-La fonction de transfert de la chaîne directe A(p)

$$A(p) = \frac{S(p)}{E(p)} = -\frac{R_2}{R_1}$$

2- Les conditions que doit remplir le circuit pour entretenir des oscillations

Conditions d'oscillation : lorsqu'on ferme l'interrupteur K : V(p) = E(p)

$$A(p)B(p) = 1$$

$$A(p)B(p) = \frac{S(p)}{E(p)}\frac{E(p)}{S(p)} = 1 \Rightarrow A(p) = \frac{1}{B(p)} \Leftrightarrow -\frac{R_2}{R_1} = 1 + \frac{6}{RCp} + \frac{5}{(RCp)^2} + \frac{1}{(RCp)^3}$$

$$-\frac{R_{2}}{R_{1}} = 1 - \frac{5}{(RC\omega)^{2}} + j\left(-\frac{6}{RC\omega} + \frac{1}{(RC\omega)^{3}}\right) \Rightarrow -\frac{R_{2}}{R_{1}} = 1 - \frac{5}{(RC\omega)^{2}} \ et \ -\frac{6}{RC\omega} + \frac{1}{(RC\omega)^{3}} = 0$$

Condition d'auto oscillation sur les résistances :

$$(RC\omega)^2 = \frac{1}{6} \Rightarrow -\frac{R_2}{R_1} = 1 - \frac{5}{\frac{1}{6}} = -29$$
 $R_2 = 29R_1$

Condition d'auto oscillation sur la fréquence d'oscillation :

$$\omega_{osc} = \frac{1}{RC\sqrt{6}}$$
 $\Longrightarrow f_{osc} = \frac{1}{2\pi RC\sqrt{6}}$