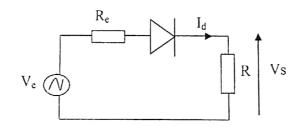

Université AKLI MOHAND OULHADJ De Bouira

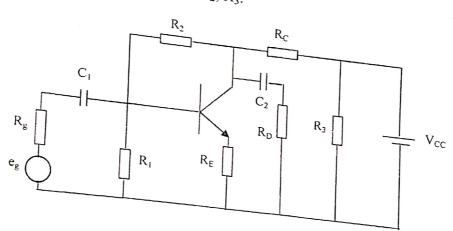
Test d'Electronique Fondamentale 2 (Durée : 30 min)


EXERCICE Nº1:

Soit le circuit donné dans la figure ci-dessous. On donne : E=0,5V, I_d =2mA (courant directe traversant la diode), U_T =26mV (tension thermodynamique), R=150 Ω .

- 1-Quelle est la valeur de la résistance dynamique r_d?
- 2-Donner le schéma équivalant électrique de cette diode dans le sens passant.
- 3- Déterminer la tension de seuil V_d.

Supposons que cette diode est insérée dans le circuit ci-dessous (Re=22 Ω , R=150 Ω). La tension $V_e(t)$ est sinusoïdale de valeur 10v (crête à crête) et de période 1*ms*.



- 4-Déterminer Vs(t) et la représenter en corrélation avec Ve(t).
- 5-Montrer que la valeur efficace de la tension V_S est : $V_{eff} = \frac{V_{max}}{2}$
- 6- Calculer les valeurs efficace et moyenne du courant qui parcourt Rc.

OU/ EXERCICE N°2 :

Le montage ci-dessous est réalisé au moyen d'un transistor NPN, fonctionnant avec les valeurs suivantes $V_{CC}=18V$, $R_{C}=1.5k\Omega$, B=100, $V_{CE}=8V$, $I_{C}=4mA$, $V_{BE}=0.6V$, l'intensité du courant traversant la résistance R_1 est égale 0.4mA et l'intensité du courant traversant la 1- Donner le schéma équivalent en régime statique,

- 2- Calculer IB, IE,
- 3- Calculer les résistances R_E, R₁, R₂, R₃.

