(EXAMEN + TEST) DE METHODES NUMERIQUES (Durée 1h30)

N.B. Utiliser 4 chiffres après la virgule, arrondir le 4ème pour tous les calculs.

EXERCICE 1

On considère l'équation f(x) = 0, avec $f(x) = e^{-x} + x - 2$

- 1. Séparer les racines de cette équation.
- 2. Faire 2 itérations de la méthode de dichotomie à partir de l'intervalle [1,2].
- 3. Approcher la racine à 10^{-2} près par la méthode de Newton en posant $x_0 = 2$. Déterminer le nombre d'itérations n à faire par cette méthode pour avoir $\Delta x \le 10^{-4}$.

EXERCICE 2

En comparant à chaque fois avec la valeur exacte, évaluer numériquement l'intégrale suivante

$$I = \int_0^{1.2} \sin(2x) dx$$
 en utilisant :

- 1. La méthode des trapèzes composite 4 intervalles.
- 2. La méthode de Simpson composite 2 intervalles.

EXERCICE 3

On considère l'équation différentielle suivante $\begin{cases} y'(t) + 2y(t) = 4t \\ y(0) = 1 \end{cases}$

- 1. Vérifier que $y(t) = 2e^{-2t} + 2t 1$ est la solution analytique exacte de cette équation.
- 2. Donner une estimation de y(0.2) en utilisant la méthode d'Euler avec un pas h=0.1 puis en utilisant la méthode RK2 avec un pas h=0.2. Comparer avec la valeur exacte.

TEST DE TD

On considère la fonction f(x) = ln(x) - x + 2

- 1. Séparer les racines de l'équation f(x) = 0 en posant $f(x) = f_1(x) f_2(x)$ avec $f_1(x) = ln(x)$.
- 2. Faire 2 itérations de la méthode de Dichotomie à partir de l'intervalle [3, 4] puis 2 itérations de la méthode de Newton à partir de $x_0 = 3$.
- 3. Evaluer numériquement $\int_1^4 f(x)dx$ par la méthode des rectangles composite 3 intervalles.
- 4. Calculer l'erreur absolue. Pour quel nombre d'intervalles cette erreur est inférieure à 0.1 ?