

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

دورة: 2022

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

اختبار في مادة: الرياضيات المدة: 40 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

1) أ-عيّن، حسب قيم العدد الطبيعي n، بواقي القسمة الإقليدية للعدد 2^n على 7

7 على 6^n على القسمة الإقليدية للعدد 6^n على $6^{2n}\equiv 1$ ثمّ استنتج بواقي القسمة الإقليدية للعدد 6^n على 6^n

7 يقبل القسمة على $\left(2021^{2022} + 1962^{1443}\right)^{1954} - 2$ يقبل العدد وين أنّ العدد

 $S_n = a_0 + a_1 + \dots + a_n$ و $a_n = 2^n + 6^n$: n عدد طبیعی (3

7 على ما العدد a_n على أ- إستنتج، حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد a_n

 $S_{n+6} \equiv S_n [7]$ ، n عدد طبیعي عدد من أجل كلّ عدد عدد طبیعي

 $S_n \equiv 0$ [7] ثمّ استنتج قیم n بحیث $S_n \equiv 2^{n+1} + 3 \times 6^{n+1} + 3$ (7) دمن أجل كلّ عدد طبيعي n بحيث $S_n \equiv 0$

التمرين الثاني: (04 نقاط)

أجب بصحيح أو خاطئ مع التعليل في كلّ حالة من الحالات التالية:

: و eta عددان حقیقیان غیر معدومین. (u_n) و (u_n) المتتالیتان العددیتان المعرّفتان بlpha (1

 $v_n = u_n + \beta$ ومن أجل كلّ عدد طبيعي n ، n عدد طبيعي $u_0 = 1$

lpha = -4eta المتتالية (v_n) هندسية إذا وفقط إذا كان –

 $\ln \sqrt{2}$ المعرفة على المعرفة

 $x\equiv 3[21]$ فإنّ $x\equiv 1[3]$ و $x\equiv 3[7]$ فإنّ (3 عدد صحيح $x\equiv 3[21]$

لدالة $f(x) = \ln(\sqrt{x^2+1}-x)$ بالدالة المعرّفة على $f(x) = \ln(\sqrt{x^2+1}-x)$ دالة فردية.

التمرين الثالث: (05 نقاط)

الدّالة العددية المعرّفة على $= (0;+\infty)$ كما يلي $= (x) = \frac{2x^2+5}{2x+1}$ الدّالة العددية المعرّفة على = (x) كما يلي = (x) كما يلي المستوي

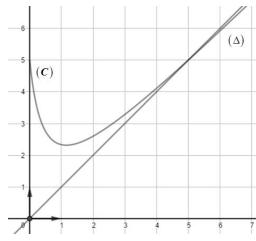
المنسوب إلى المعلم المتعامد المتجانس $\left(O; \vec{i}, \vec{j}\right)$ كما هو مبيّن في الشّكل المرفق.

 $u_{n+1}=f\left(u_{n}
ight)$ و $u_{0}=2$ على كما يلي: $u_{0}=1$ و المعرّفة على المعرفة على المعرفة على المعرفة على المعرّفة على المعرفة على المعرّفة على المعرفة على المعرفة على المعرّفة على المعرفة على المعرفة على ا

اختبار في مادة: الرياضيات. الشعبة: رياضيات. بكالوريا 2022

$$y=x$$
 أ- أدرس وضعية (C) بالنّسبة إلى المستقيم أ- أدرس وضعية (C)

 (u_n) انقل الشّكل ومثّل على حامل محور الفواصل الحدود u_1 ، u_0 وضع تخميناً حول اتّجاه تغيّر -


$$2 \le u_n < 5$$
 ، n عدد طبیعي أنّه من أجل كلّ عدد طبیعي أنّه من أجل (2

- أدرس اتجاه تغير المتتالية (u_n) ثم استنتج أنها متقارية.

$$5 - u_{n+1} = \frac{2u_n}{2u_n + 1} (5 - u_n)$$

$$\frac{2u_n}{2u_n+1} \le \frac{10}{11}$$
 ، n عدد طبیعي عدد أخه من أجل كلّ عدد (4

$$\lim_{n\to+\infty}u_n$$
 بـ – اِستنتج أنّ $0<5-u_n\leq 3\left(\frac{10}{11}\right)^n$ ثم احسب

التمرين الرابع: (07 نقاط)

و المستوي ال

$$\lim_{x \stackrel{<}{\longrightarrow} 1} f(x)$$
 و $\lim_{x \to -\infty} f(x)$ أحسب (1

$$e^x - x > 0$$
 ، x عدد حقیقی عدد أنّه من أجل كلّ عدد (2

$$f'(x) = \frac{(x-2)(e^x - x)}{(x-1)^2}$$
 ،] $-\infty$;1[من أجل كلّ عدد حقيقي x من أجل كلّ عدد حقيقي

جاِستنتج اتّجاه تغيّر الدّالة f ثمّ شكّل جدول تغيّراتها.

النَّتيجة بيانيا.
$$\lim_{x\to\infty} (f(x)+x)$$
 أ- أحسب (3

y=-x-1 أدرس وضعية (C) بالنّسبة إلى المستقيم (Δ) ذي المعادلة (C)

$$0$$
 أكتب معادلة للمستقيم (T) مماس المنحنى (C) في النّقطة ذات الفاصلة (T)

$$-0.8 < \alpha < -0.7$$
 حيث α حيث $f(x) = 0$ تقبل حلاً وحيداً α حيث $f(x) = 0$ حيث (5) حيث $\phi(x) = 0$ حيث $\phi(x) = 0$ حيث $\phi(x) = 0$

$$\frac{e^{x}-x^{2}+x-1}{x-1}=mx$$
: خافش بيانياً، حسب قيّم الوسيط الحقيقي m ، عدد وإشارة حلول المعادلة (6

و الدّالة المعرّفة على
$$g(x) = \frac{\left|e^x - x^2\right|}{x-1}$$
 با $g(x) = \frac{\left|e^x - x^2\right|}{x-1}$ و الدّالة المعرّفة على $g(x) = \frac{\left|e^x - x^2\right|}{x-1}$

 (C_{g}) دون رمز القيمة المطلقة ثمّ أنشى g(x) – أكتب

انتهى الموضوع الأول

الموضوع الثانى

التمرين الأول: (04 نقاط)

$$B_n = n + 2$$
 و $A_n = n^3 + 5n^2 + 7n + 9$ و n

$$p \gcd(A_n; B_n) = p \gcd(B_n; 7)$$
 أ- بيّن أنّ (1

$$p \gcd(A_n; B_n)$$
 إستنتج القيم الممكنة لـ

جـ عيّن قيم العدد الطبيعي n حتى يكون A_n و A_n أوليين فيما بينهما.

$$y$$
 و x نعتبر المعادلة $A_2x - B_2y = 29 \cdots (E)$ نعتبر المعادلة (2

$$x \equiv 3[4]$$
 فإنّ (E) حلاً للمعادلة (x; y) أبّ الثنائية أبّ أبّ أبّ أبّ أبّ الثنائية الثنائية الثنائية الثنائية أبّ أبّ أبّ الثنائية الثنا

$$(E)$$
 عيّن حلول المعادلة $-$

$$51x - 4y = 45 \cdot \cdot \cdot \cdot (E')$$
 أ- إستنتج حلول المعادلة (3

$$|y-12x| \le 3$$
 عين الثنائيات $(x; y)$ حلول المعادلة (E') عين حلول عبد الثنائيات

التمرين الثاني: (04 نقاط)

$$f(x) = \frac{ax}{x+b} + \ln(x+b)$$
 يلي: $-1; +\infty$ على على الدالة العددية المعرّفة والموجبة على $-1; +\infty$

حيث a و d عددان حقيقيان مع d موجب تماما. تمثيلها البياني (C) في المستوي المنسوب إلى المعلم المتعامد المتجانس $(C;\vec{i},\vec{j})$ يقبل حامل محور الفواصل مماسا له في النقطة $(C;\vec{i},\vec{j})$

$$f(x) = -1 + \frac{1}{x+1} + \ln(x+1)$$
 ، $]-1; +\infty[$ من أجل كلّ عدد حقيقي x من أجل كلّ عدد حقيقي (1

$$g(x) = (x+1)\ln(x+1)$$
 : كما يلي: $g(x) = (x+1)\ln(x+1)$ الدالة العددية المعرّفة على $g(x) = (x+1)\ln(x+1)$ الحسب $g'(x)$ ثمّ إستنتج دالة أصلية للدالة $g(x)$ على $g'(x)$

$$u_n = \int\limits_{n-1}^n f(x) \, dx : \mathbb{N}^*$$
 ب المتتالية العددية المعرّفة على المتالية (u_n) (3

أ- أحسب u_{2022} ثمّ فسّر النتيجة بيانيا.

$$u_n = -2 + (n+2)\ln(n+1) - (n+1)\ln n$$
 ، n معدوم غير معدوم غير معدوم $\lim_{n \to +\infty} u_n$ معدوم $\lim_{n \to +\infty} u_n$

التمرين الثالث: (05 نقاط)

$$v_n = u_n - 1$$
 و $u_{n+1} = -\frac{1}{3}u_n^2 + \frac{2}{3}u_n + \frac{2}{3}$ ، $u_0 = 0$: $v_n = 0$ ب المتتاليتان العدديتان المعرّفتان على $v_n = 0$

$$v_{n+1} = -\frac{1}{3}(v_n)^2$$
 ، بیّن أنّه من أجل كلّ عدد طبیعي (1

$$-3 \le v_n < 0$$
 ، n برهن بالتراجع أنّه من أجل كلّ عدد طبيعي (2

اختبار في مادة: الرياضيات. الشعبة: رياضيات. بكالوريا 2022

(
$$v_n$$
) أدرس اتجاه تغير المتتالية (v_n) ثمّ استنتج أنّ الجاه تغير المتتالية (v_n)

$$w_n = \ln\left(-\frac{3}{v_n}\right)$$
 : ب n عدد طبیعي عدد من أجل كلّ عدد (w_n) (4

 w_0 أ- بيّن أنّ (w_n) متتالية هندسية أساسها 2 يطلب حساب حدّها الأول

$$\lim_{n\to +\infty}u_n$$
 بدلالة u_n في بدلالة u_n و استنتج v_n و استنتج w_n بدلالة w_n بدلالة w_n

$$P_n = \frac{1}{v_0} \times \frac{1}{v_1} \times \dots \times \frac{1}{v_n}$$
 أحسب بدلالة n الجُداء P_n حيث (5

التمرين الرابع: (07 نقاط)

$$h(x)=x+\ln x$$
: كما يلي $0;+\infty$ على على الدالة العددية المعرّفة على الدالة العددية العد

h أُدرس اتّجاه تغيّر الدّالة (1)

$$0.5 < \alpha < 0.6$$
 حيث أنّ المعادلة $h(x) = 0$ تقبل حلاً وحيداً α حيث أنّ المعادلة (2

$$]0;+\infty[$$
 على $]0;+\infty[$ على المتنتج إشارة

$$f(x) = -\frac{1}{2}x^2 + 3x - x \ln x + (\ln x)^2$$
: كما يلي $g(x) = -\frac{1}{2}x^2 + 3x - x \ln x + (\ln x)^2$ الدالة العدديّة المعرّفة على $g(x) = -\frac{1}{2}x^2 + 3x - x \ln x + (\ln x)^2$ الدالة العدديّة المعرّفة على $g(x) = -\frac{1}{2}x^2 + 3x - x \ln x + (\ln x)^2$

$$\left(O; \vec{i}\;,\; \vec{j}
ight)$$
 سنجامد المتعامد المتعامد المستوي المستوي المنسوب إلى المعلم المتعامد المتجانس المستوي

$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to \infty} f(x)$ أحسب (1

$$f'(x) = \frac{(2-x)h(x)}{x}$$
 ، الله من أجل كلّ عدد حقيقي x موجب تماما ، وجب أدّ (2

 $oldsymbol{+}$ استنتج اتّجاه تغيّر الدّالة f ، ثمّ شكّل جدول تغيّراتها.

$$f(\alpha)$$
 بيّن أنّ $f(\alpha) = \frac{3}{2}\alpha(\alpha+2)$ ثمّ عيّن حصراً لـ (3

$$g(x) = x^2 + x - 2 + 2 \ln x$$
 : كما يلي $g(x) = x^2 + x - 2 + 2 \ln x$ الدّالة العددية المعرّفة على $g(x) = x^2 + x - 2 + 2 \ln x$

g(1) أ- أدرس اتّجاه تغيّر الدّالة g واحسب

بين أنّ (C) يقبل نقطة انعطاف A يطلب تعيين إحداثييها.

A أكتب معادلة للمستقيم (T) مماس المنحني (C) في النّقطة

$$]0;5]$$
 limit $]0;5]$ limit $[C)$ $[C]$ $[C]$

$$k\left(x\right)=f\left(e^{-x}
ight)$$
 الدالة العددية المعرّفة على $\mathbb R$ كما يلي $k\left(\mathbf 6
ight)$

 $\lim_{x \to +\infty} k(x)$ و $\lim_{x \to +\infty} k(x)$ ثم احسب $\lim_{x \to -\infty} k(x)$ ، ادرس اتجاه تغیّر الدالة $\lim_{x \to +\infty} k(x)$ ثم احسب عبارة و $\lim_{x \to +\infty} k(x)$ ، ادرس اتجاه تغیّر الدالة $\lim_{x \to +\infty} k(x)$. انتهی الموضوع الثانی

العلامة		/ 9 Est 915 7									
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)									
التمرين الأول (04 نقاط)											
	0.5	n			3 <i>k</i>	3k + 1	3	k+2	يدية	أ- بواقي القسمة الإقا	1
	0.5	راقي قسمة 2^n على 2		بواقي ن	1	2	4			7 على 2^n	
1		$6^{2n} \equiv 1[7]$ ومنه $6^{2n} = 36^n$ ب									
1	0.5										
	0.5					n		2 <i>k</i>	2k + 1		
				7	على 7	6^n ي قسمة	بواقي	1	6		
	0.5			20	021^{20}	$022 \equiv 1[7]$	منه	20: و	$21^{2022} \equiv 0$	$(-2)^{2022}$ [7] لدينا	2
1		$1962^{1443} \equiv 1[7]$ ومنه $1962^{1443} \equiv 2^{3k}[7]$									
	0.5	$\left(2021^{2022} + 1962^{1443}\right)^{1954} - 2 \equiv 0[7]$ ومنه									
	0.25×4	n	6 <i>k</i>	6k -	+1	6k + 2	6 <i>k</i>	:+3	6k + 4	6k+5	3
		2^n	1	2	,	4		1	2	4	
		6 ⁿ	1	6		1		6	1	6	
		a_n	2	1		5		0	3	3	
	0.5						0		"	$n^{n} + 6^{n}$ ب- لدينا $n^{n} + 6^{n}$	
2		$a_{n+6} = 2^{n+6} + 6^{n+6} = 2^6 \times 2^n + 6^6 \times 2^n + 6^6 \times 2^n + 6^6 \times 2^n + 6^6 \times 2^n + 6^n = 2^n $									
		$S_{n+6}\equiv S_nigl[7igr]$ اذن $a_{n+6}\equiv a_nigl[7igr]$ وبالتالي $a_{n+6}\equiv 2^n+6^nigl[7igr]$ اذن									
	0.25	$S_n = \sum_{k=0}^{k=n} 2^k + \sum_{k=0}^{k=n} 6^k = 2^{n+1} - 1 + \frac{6^{n+1} - 1}{5}$ جادینا .									
		$S_n \equiv 2^{n+1} + 3 \times 6^{n+1} + 3 \begin{bmatrix} 7 \end{bmatrix}$ اذن $S_n = 5 \times 2^{n+1} + 6^{n+1} - 6$ و منه									
	0.25	$n=6k+5$ يكافئ $S_n\equiv 0$ عليه $S_n\equiv 0$									
				اط)	04 نة	ين الثاني: (التمر			<u> </u>	
1	0.5 + 0.5			`		•		<u> </u>	$v + \frac{4\beta}{}$	$\frac{+\alpha}{5}$: صحیح لأنّ	1
1	0.5 + 0.5										
1	0.5 + 0.5	$u_n = \ln \sqrt{e^{n \cdot \ln 2}} = n \times \ln \sqrt{2}$: صحیح لأنّ						2			
			. و	x = 7	k + 3	و منه: 3	$x \equiv$	1[3]	و $x \equiv 3$	خاطئ لأنّ: لدينا [7	3
1	0.5 + 0.5					، تورا				$7k + 3 \equiv 1 \lfloor 3 \rfloor$	
1				X	= 10	أي [21]	x =	21k'		k = 3k' + 1اذن	
									((تقبل طرائق اخری	
1	0.5 + 0.5	f(-x)+f(x)=0: صحیح لأنّ							4		

		التمرين الثالث: (05 نقاط)								
	0.25	$f(x) - x = \frac{5 - x}{2x + 1} - 1$	1							
	0.5	<i>x</i> 0 5 +∞								
		الوضعية (Δ) أسفل (Δ) أسفل (C)								
		ب- تمثيل الحدود								
		y								
	0.2542	4								
	0.25×3									
1.75		3								
		2								
	0.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
		التخمين: (u_n) متزايدة تماما								
		اً - البرهان بالتراجع $f(2) \leq f(u_n) < f(5)$ فان $2 \leq u_n < 5$ وإذا كان $2 \leq u_n < 5$ فان $2 \leq u_0 < 5$	2							
	0.5+0.25	,								
1.5	$2 \le u_{n+1} < 5$ ومنه $\frac{13}{5} \le u_{n+1} < 5$									
	0.5	ب - لدينا u_n - $u_n = \frac{5 - u_n}{2u_n + 1} > 0$ و منه u_{n+1} و منه الما								
	0.25									
		متزایدة تماما و محدودة من الأعلى فهي متقاربة (u_n)	2							
0.5	0.5	$5 - u_{n+1} = 5 - \frac{2u_n^2 + 5}{2u_n + 1} = \frac{2u_n}{2u_n + 1} (5 - u_n)$								
		n n								
	0.5	$\frac{2u_n}{2u_n+1} - \frac{10}{11} = \frac{2(u_n-5)}{11(2u_n+1)} \le 0 - 1$	4							
1.25	0.5	$0 < 5 - u_n \le 3 \left(\frac{10}{11}\right)^n$ و منه $0 < 5 - u_{n+1} \le \frac{10}{11}(5 - u_n)$ ب – لدينا								
	0.25									
	0.23	$\lim_{n\to+\infty}u_n=5$								

		التمرين الرابع: (07 نقاط)						
0.5	0.25+0.25	$\lim_{x \to -\infty} f(x) = -\infty \lim_{x \to -\infty} f(x) = +\infty$	1					
1.75	0.5	x $-\infty$ 0 $+\infty$ $e(x)$ -1 -0 $+1$ $e(x)$ $-\infty$ 0 $+\infty$ $+1$ $e(x)$ $-\infty$ 0 $+\infty$ -1 $-\infty$ 0 $+\infty$ 0 $+\infty$ 0 0 0 0 0 0 0 0 0 0	2					
	0.5	$f'(x) = \frac{(x-2)(e^x - x)}{(x-1)^2} - \varphi$						
	0.5	ج $-$ متناقصة تماما						
	0.25	جدول التغيرات $\begin{array}{c c} x & -\infty & 1 \\ \hline +\infty & +\infty \\ \hline f(x) & & -\infty \end{array}$						
	0.5	$\lim_{x \to -\infty} (f(x) + x) = -1 - 1$	3					
1	0.25	$-\infty$ عند (C) عند $y=-x-1$						
	0.25	$]-\infty;0]$ أسفل (Δ) في المجال $[0;1[$ و (C) أعلى (Δ) في المجال (C)						
0.5	0.5	y = -2x - 1:(T)معادلة	4					
	0.75	أ – مبرهنة القيمة المتوسطة	5					
1.75	0.25 0.25	$egin{array}{cccccccccccccccccccccccccccccccccccc$						
	0.5	-4 -3 -2 -1 0 $1x$ -2 -3 -4 -4 -5						

0.75	0.25	$f(x) = mx - 1$ تكافئ $\frac{e^x - x^2 + x - 1}{x - 1} = mx$	6							
	0.5	m $-\infty$ -2 -1 $+\infty$ $-\infty$ -1 -1 $+\infty$ $-\infty$ -1 -1 -1 $-\infty$ -1								
	0.5	$\begin{cases} g(x) = -f(x) & : x \le \alpha \\ g(x) = f(x) & : \alpha \le x < 1 \end{cases}$	7							
0.75	0.25	(C_g) similar (C_g) simil								
		عناصر الإجابة (الموضوع الثاني)								
		التمرين الأول: (04 نقاط)								
	0.5	$p \gcd(A_n; B_n) = p \gcd(B_n; 7)$ ومنه $A_n = (n^2 + 3n + 1)B_n + 7$ أ لدينا	1							
1.5	0.5	$p\gcd(A_n; B_n) \in \{1;7\} - \varphi$								
	0.5	$n+2\equiv 0igl[7igr]$ تكافئ $p\gcd(A_n;B_n)=7$ ج $k\in\mathbb{N}$ المطلوبة هي كل الأعداد الطبيعية ما عدا $7k+5$ مع								
1.5	0.75	x = 3[4] ومنه $3x = 1[4]$ اي $51x - 4y = 29[4]$	2							
1.5	0.75	$k \in \mathbb{Z}$ مع $(x;y) = (4k+3;51k+31)$: الحلول								
	0.5	$51x-4(y+4)=29$ تكافئ $51x-4y=45$ أ $k\in\mathbb{Z}$ و منه الحلول: $(x;y)=(4k+3;51k+27)$ مع								
1	0.5	ب - $ y-12x \le 1$ تكافئ $ y-12x \le 1$ اذن الثنائيات هي $ y-12x \le 1$ ب الثنائيات (15;180)								
		التمرين الثاني: (04 نقاط)								
1	0.5+0.5	حیث $ab + \frac{1}{b} = 0 \ln b = 0$ تکافئ $f'(0) = 0$ و منه $f(x) = -1 + \frac{1}{x+1} + \ln(x+1)$ و $a = -1$	1							

	0.5	$a'(x) = 1 + \ln(x + 1)$	2
1.5	0.5	$g'(x) = 1 + \ln(x+1)$	2
	01	$]-1;+\infty[$ على f على $x\mapsto -2x+(x+2)\ln(x+1)$	_
	0.25	$u_{2022} = \int_{2021}^{2022} f(x) dx = -2 + 2024 \ln 2023 - 2023 \ln 2022 - 1$	3
	0.25	، $y\!=\!0$:هو مساحة الحيز المحدد بـ (C) و المستقيمات التي معادلاتها u_{2022}	
		$x = 2021 \cdot x = 2022$	
1.5	0.5	$u_n = -2 + (n+2)\ln(n+1) - (n+1)\ln n - \varphi$	
	0.5	$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(-2 + \ln(n+1) + \frac{n+1}{n} \times \frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}} \right) = +\infty - \Rightarrow$	
		التمرين الثالث: (05 نقاط)	
1	01	$v_{n+1} = u_{n+1} - 1 = -\frac{1}{3}(u_n - 1)^2 = -\frac{1}{3}(v_n)^2$	1
1	01	البرهان بالتراجع	2
0.75	0.25+0.25	ومنه (v_n) متزایدة تماما $v_{n+1}-v_n=-v_n\left(rac{1}{3}v_n+1 ight)>0$	3
	0.25	متزايدة تماما ومحدودة من الأعلى فهي متقاربة (u_n)	
	0.25+0.5	$w_0 = \ln 3$ $w_{n+1} = \ln \left(-\frac{3}{v_{n+1}} \right) = 2 \ln \left(-\frac{3}{v_n} \right) = 2w_n - 5$	4
1.75	4x 0.25	$u_n = -3^{1-2^n} + 1$, $v_n = -3^{1-2^n}$, $w_n = 2^n \ln 3$ $\lim_{n \to +\infty} u_n = 1$	
0.5	0.5	$P_n = (-1)^{n+1} imes 3^{2^{n+1}-n-2}$ ومنه $\frac{1}{v_n} = -3^{2^n-1}$ لدينا	5
		التمرين الرابع: (07 نقاط)	
0.5	0.5	$]0;+\infty$ متزایدة تماما علی h	I 1
	0.5	أ – تطبيق مبرهنة القيم المتوسطة	2
0.75	0.25	· ·	
0.75		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		h(x) - 0 +	TT
0.75	0.5+0.25	$\lim_{x \to +\infty} f(x) = -\infty \lim_{x \to \infty} f(x) = +\infty$	II 1
1	0.5	$f'(x) = \frac{(2-x)h(x)}{x} - 1$	2
1	0.25	ب ⊣تجاه التغير	

	1								
	0.25	$[2;+\infty[\ 0\]0;\alpha]$ and also also arilled a particles $[\alpha;2]$ and							
0.5	0.25+0.25	$1,8 \le f(\alpha) \le 2,4 \text{ef} f(\alpha) = \frac{3}{2}\alpha(\alpha+2)$	3						
	0.25+0.5	$g(1) = 0$ $g'(x) > 0$. $g'(x) = \frac{2x^2 + x + 2}{x} - 1$	4						
1.75	0.25+0.25	ب $-\frac{1}{2}$ بنا $\frac{-g(x)}{x^2}$ بنائی $f''(x) = \frac{-g(x)}{x^2}$ بنقطة انعطاف $A\left(1; \frac{5}{2}\right)$							
	0.5	$y=x+rac{3}{2}:$ هي (T) هي ج							
0.75	0.5+0.25	انشاء (C) و (T) في المجال [0; 5] المجال [0;	5						
	0.25	$k'(x) = -e^{-x}f'(e^{-x})$	6						
	0.25	ومتزایدة تماما علی کل من $[-\ln 2; -\ln lpha]$ ومتزایدة تماما علی کل من							
1		$\left[-\ln\alpha;+\infty\right[\cdot]-\infty;-\ln2\right]$							
	0.25	$\lim_{x \to +\infty} k(x) = +\infty \lim_{x \to -\infty} k(x) = -\infty$							
	0.25	$\begin{array}{ c c c c c c c }\hline x & -\infty & -\ln 2 & -\ln \alpha & +\infty \\ \hline k'(x) & + & 0 & - & 0 & + \\ \hline k(x) & & & & +\infty \\ \hline k(x) & & & & & f(\alpha) & & & \\ \hline \end{array}$							