Examen de Traitement du Signal (TDS)

Novembre 2007

Enseignants :	J.L. Dion – I. Tawfiq - G. Hiet	Note:	/20

Classe: 3ème année

Durée : 2h00

Aucun document autorisé Calculatrice ESTACA autorisée

Nom de l'étudiant : Prénom :

NE PAS DEGRAPHER LE SUJET

Le barème est donné à titre indicatif

Pour chaque question à choix multiples, sauf mention contraire : réponse juste et complète 1 point, incomplète ½ point, fausse ou absence de réponse 0 point.

Notation:

* : produit de convolution

: multiplication « scalaire »

 $\delta(t)$: impulsion de Dirac

 $\coprod_{T_e}(t)$: peigne de Dirac

 $\prod_{\tau}(t)$: signal « porte » d'amplitude 1 et de largeur τ

Question de cours (QCM): 5 pt

1 – Soit le signal porte $x(t) = A. \prod_{T} (t)$, centré sur l'origine, d'amplitude A et de durée T.

L'autocorrélation de x est :

- a) Un sinus cardinal
- b) Une fonction triangle
- c) Impaire et maximale en $\tau = 0$
- d) Majorée par A².T
- e) aucune des réponses précédentes ne convient

2 – Le spectre d'un signal réel continu périodique calculé à partir de la Transformée de Fourier généralisée est :

- a) périodique
- b) discret
- c) de module pair
- d) de module et de phase pairs
- e) aucune des réponses précédentes ne convient

3 – On considère une opération de quantification linéaire centrée sur une plage de 0 à 10V sur 8 bits. On suppose que l'erreur suit une loi uniforme. Soit $E_{err} = \sigma_{err}^2$ l'énergie du bruit de quantification et Rsb le rapport signal à bruit :

- a) $E_{err} = 127.10^{-6} \text{ V}^2$ b) $E_{err} = 39.10^{-3} \text{ V}^2$
- c) Rsb augmente de 6 dB lorsque la résolution augmente d'un bit
- d) Rsb diminue de 6 dB lorsque la résolution augmente d'un bit
- e) aucune des réponses précédentes ne convient

4 – Pour respecter le théorème de Shannon lors de l'échantillonnage d'un signal x(t) à une fréquence d'échantillonnage fe il faut:

a) choisir fe inférieure à la fréquence maximale du spectre du signal échantillonné

- b) vérifier que la fréquence maximale du spectre du signal échantillonné soit inférieure à la moitié de la fréquence d'échantillonnage
- c) filtrer au préalable le signal échantillonné par un filtre passe bas numérique
- d) utiliser un filtre anti-repliement
- e) aucune des réponses précédentes ne convient

5 – Le signal $x(t)=A.\sin(2.\pi.f_0.t)$, A>0, $f_0 > 0$ possède :

- a) une énergie totale infinie
- b) une énergie totale finie
- c) une puissance totale nulle
- d) un spectre s'annulant en f=0 (ou n=0)
- e) aucune des réponses précédentes ne convient

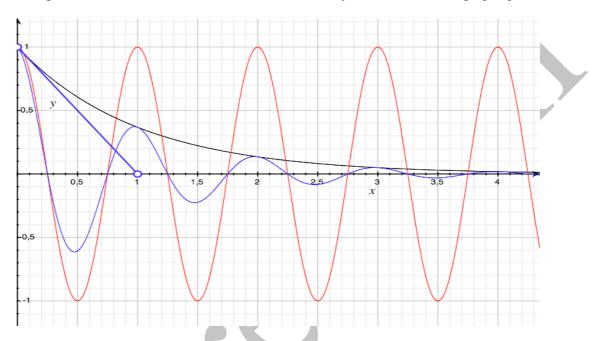
Exercice 1:5 pts

Soit les signaux suivants :

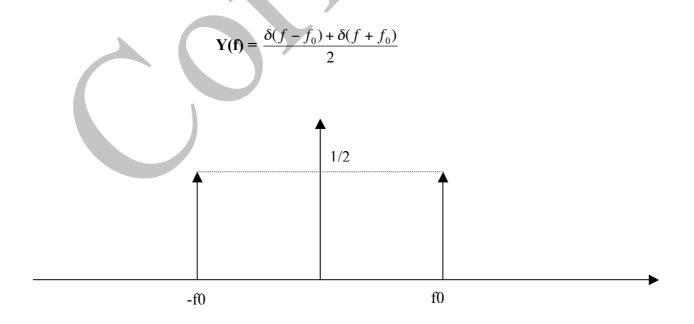
$$x(t) = e^{-a.t} \mathcal{E}(t), a > 0$$

 $y(t) = \cos(2\pi t)$ avec $\varepsilon(t)$ échelon de Heaviside $z(t) = y(t) \mathcal{L}(t)$

Question 1 : En prenant a = 1 et fo = 1Hz, tracer l'allure de x, y et z sur le même graphique



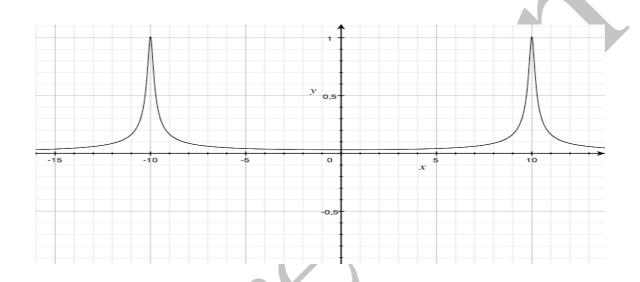
Question 2 : Déterminer Y(f), la transformée de Fourier de y(t) et tracer l'allure du spectre de y (en module)



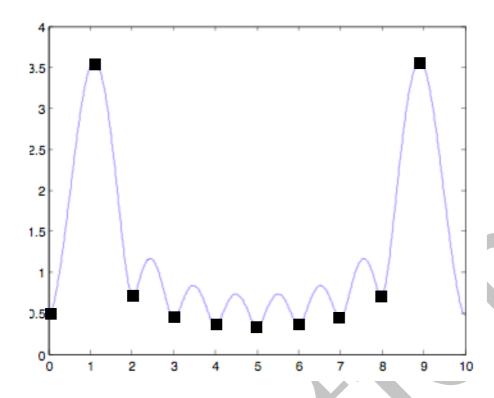
Question 3 : Déterminer Z(f), la transformée de Fourier de z(t) et tracer l'allure du spectre de z (en module) en supposant $f_0>>a$

$$Z(f) = X(f) \otimes Y(f) = \frac{X(f)}{2} \otimes \left[\delta(f - f_0) + \delta(f + f_0) \right]$$
$$X(f) = \int_0^\infty e^{-a.t} e^{-j.2.\pi.f.t} dt = \frac{1}{a + j.2\pi.f}$$

$$Z(f) = \frac{1}{2} \left[\frac{1}{a + j \cdot 2\pi \cdot (f + f_0)} + \frac{1}{a + j \cdot 2\pi \cdot (f - f_0)} \right]$$



Question 4 : On numérise le signal z(t) ($f_0 = 1Hz$) pendant $\tau = 1s$ à une fréquence d'échantillonnage $f_e = 10Hz$. On note $z_{oe}(t)$ le modèle du signal échantillonné pendant τ . Expliquer l'allure du spectre de z_{oe}



répétition du spectre tous les fe

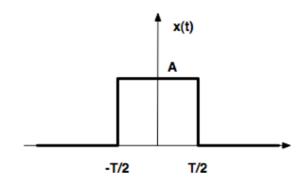
convolution par un sinus cardinal due à la fenêtre d'observation (rectangle)

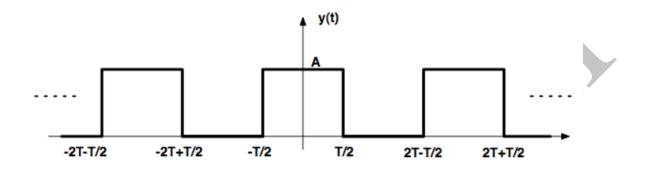
Question 5 : On décide de déterminer numériquement le spectre de z_{oe} en calculant la $Z_{oe}[k]$, TFD du signal numérisé. Donner l'expression de $Z_{oe}[k]$ en fonction de $Z_{oe}(f)$, de τ et de f_{e} . Tracer $Z_{oe}[k]$ sur le graphique précédent.

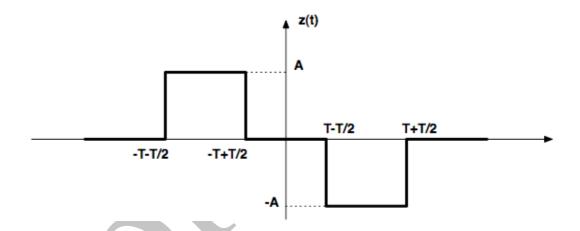
$$Z_{oe}[k] = Z_{oe} (k.fe/N)$$

Exercice 2:10 pts

Soit les signaux suivants (y(t) est périodique de période 2T) :







Question 1 : Déterminer la puissance totale et l'énergie totale des signaux x(t) et y(t).

$$E_{tot}(x) = \int_{-\infty}^{\infty} x^2(t)dt = \int_{-T/2}^{T/2} A^2 dt = A^2 T$$
 => $P_{tot}(x)=0$

$$E_{tot}(y) = \lim_{N \to \infty} (N.E_{tot}(x)) = +\infty$$

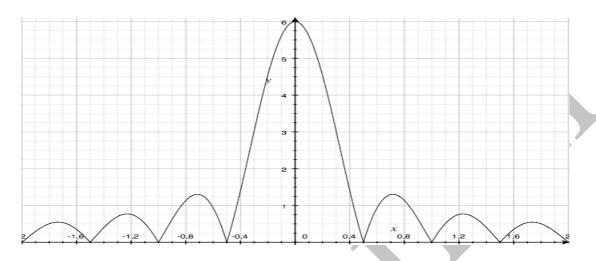
$$P_{tot}(y) = \frac{1}{T} \int_{-T/2}^{T/2} y^2(t) dt = \frac{A^2}{2}$$

$$E_{tot}(z) = 2.E_{tot}(x) = 2.A^2.T$$
 => $P_{tot}(z)=0$

Question 2 : Déterminer X(f) la transformée de Fourier de x(t)

$$X(f) = A.T. \frac{\sin(\pi . f.T)}{\pi . f.T} = A.T. \sin c(f.T)$$

Question 3: Tracer le spectre en module de x avec A=3 et T=2.



Question 4 : Déterminer Y(f) à partir de X(f)

$$y(t) = rep_{2T}(x(t)) = x(t) \otimes \coprod_{2T}(t)$$

$$=> Y(f) = \frac{1}{2.T}X(f). \coprod_{\frac{1}{2.T}} (f) = \frac{1}{2.T} \sum_{-\infty}^{\infty} X\left(\frac{k}{2.T}\right) \delta\left(f - \frac{k}{2.T}\right) = \frac{A}{2} \sum_{-\infty}^{\infty} \sin c(\frac{k}{2}) \delta(f - \frac{k}{2.T})$$

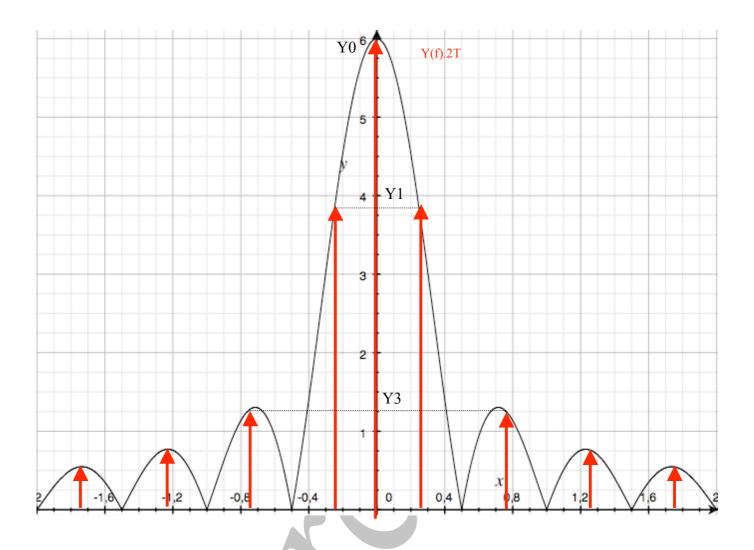
Question 5 : Développer y(t) en série de Fourier à coefficients complexes. Comparer avec les résultats de la question 4.

$$Y_n = \frac{1}{2.T} \int_{-T}^{T} x(t) e^{-j.n.\omega t} dt = \frac{A}{2} \sin c(\frac{n}{2})$$

On remarque : $Y(f) = \sum_{-\infty}^{\infty} Y_n \cdot \delta(f - \frac{n}{2.T})$

Question 6 : Tracer le spectre en module de y. Faire apparaître l'allure du spectre de x et les valeurs des coefficients du développement en séries.

7

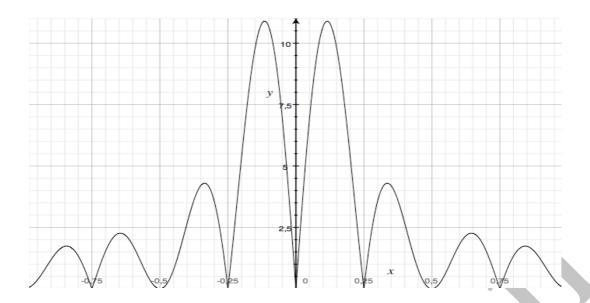


Question 7: Déterminer Z(f) et tracer le spectre en module de z.

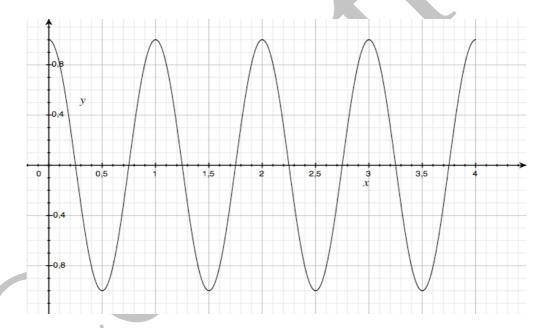
$$z(t) = x(t+T) - x(t-T)$$

$$Z(f) = X(f) \cdot \left(e^{j \cdot 2 \cdot \pi \cdot f \cdot T} - e^{-j \cdot 2 \cdot \pi \cdot f \cdot T} \right) = X(f) \cdot \sin(2 \cdot \pi \cdot f \cdot T) \cdot 2 \cdot j$$

$$Z(f) = A.T.2.j.\sin c(f.T).\sin(2\pi .f.T)$$



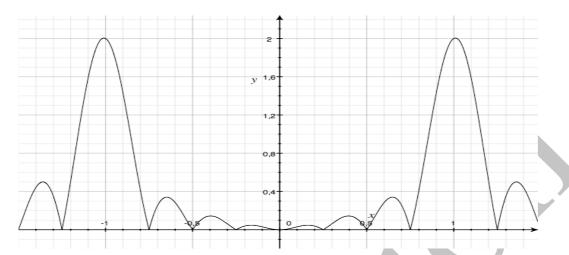
Question 8 : Soit le signal $s(t) = cos(2.\pi.f_0.t)$. x(t). Tracer l'allure de s(t). Quel phénomène « physique » est modélisé par la multiplication par x(t)?



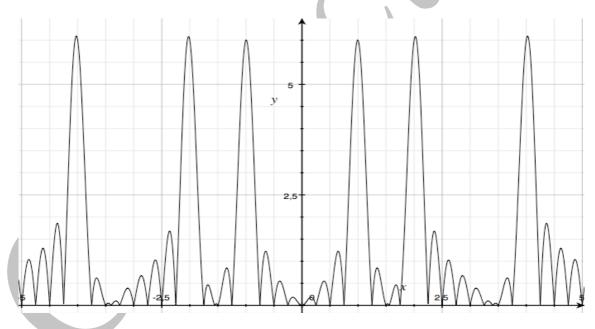
Muliplication par une fonction porte -> modélisation de l'observation ou mesure de durée finie.

Question 9 : Déterminer S(f) et tracer le spectre en module de s.

$$S(f) = \frac{1}{2} \left[\delta(f - f_0) + \delta(f + f_0) \right] \otimes X(f) = \frac{T}{2} \left[\sin c \left[T(f - f_0) \right] + \sin c \left[T(f + f_0) \right] \right]$$



 $\label{eq:Question 10} \textbf{Question 10}: \text{ On \'echantillonne s \`a la fr\'equence d'\'echantillonnage f}_e. \text{ On suppose l'\'echantillonnage id\'eal}. Donner l'allure du spectre du signal \'echantillonn\'e. Commentez.}$



Echantillonnage -> répétition du spectre. Observation de durée finie -> multiplication par sinus cardinaux.

Développements complémentaires

