الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

دورة: 2023

امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

المدة: 03 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

$$u_{n+1}=rac{3}{5}u_n-rac{6}{5}$$
 ، n ومن أجل كلّ عدد طبيعي $u_0=2$: المتتالية العددية المعرّفة ب

$$u_n > -3$$
 ، n برهن بالتراجع أنّه: من أجل كلّ عدد طبيعي (1

بيّن أنّ
$$(u_n)$$
 متناقصة تماما ثمّ استنتج أنّها متقاربة.

$$V_n = u_n + 3$$
 بنالية العددية المعرّفة على \mathbb{N} بنالية العددية المعرّفة على (V_n) (3

$$v_0$$
 أين أنّ المتتالية (v_n) هندسية أساسها $\frac{3}{5}$ يُطلب تعيين حدّها الأول

$$u_n=5igg(rac{3}{5}igg)^n-3$$
 ، n عيّن عبارة الحدّ العام v_n بدلالة v_n استنتج أنّه: من أجل كلّ عدد طبيعي v_n بدلالة v_n

$$\lim_{n\to +\infty} u_n$$
 احسب (ج

$$T_n = u_0 + u_1 + \dots + u_n$$
 و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (4 $T_n = \frac{19}{2} - 3n - \frac{15}{2} \left(\frac{3}{5}\right)^n$ ، n عدد طبيعي S_n عدد طبيعي S_n احسب S_n

التمرين الثاني: (04 نقاط)

$$(1-x)(10x^2+9x-1)=0$$
 المعادلة \mathbb{R} المعادلة (1)

$$10x^2 + 9x - 1 = (x+1)(10x-1)$$
 ، x عدد حقیقی عدد عقیق اُنّه: من أجل كلّ عدد حقیقی

$$(1 - \ln x)(10(\ln x)^2 + 9(\ln x) - 1) = 0$$
 أ) استنتج في المجال $(10(\ln x)^2 + 9(\ln x) - 1) = 0$ مجموعة حلول المعادلة (2

$$(1-e^x)(10e^{2x}+9e^x-1)\leq 0$$
 مجموعة حلول المتراجحة \mathbb{R} مجموعة حلول المتراجحة

$$\ln(10x^2+9x) \ge 0$$
 المتراجحة $]0;+\infty[$ المجال على المجال (3

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2023

التمربن الثالث: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات الآتية مع التبرير.

$$u_n$$
: المتتالية الحسابية التي حدّها الأول 3 وأساسها u_n . من أجل كلّ عدد طبيعي (u_n

$$u_n = 3 - 4(n - 1)$$
 ($u_n = 3 - 4n$ ($u_n = 3 \times (-4)^n$ ($u_n = 3 \times$

$$f(x) = 1 + \ln(x+1)$$
 :ب $[-1; +\infty[$ الدّالة المعرّفة على المجال $f(x) = 1 + \ln(x+1)$

$$\left(O; \overrightarrow{i}, \overrightarrow{j} \right)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس المستوي المنسوب إلى المنسوب إلى المنسوب المستوي

معادلةً لِمماس $\left(C_{f}
ight)$ عند النقطة ذات الفاصلة

$$y = x - 1 \quad (\Rightarrow \quad y = x + 1) \quad ($$

$$g(x) = 2x - \frac{1}{x}$$
 بـ: $g(x) = 2x - \frac{1}{x}$ بـ: $g(x) = 2x - \frac{1}{x}$ بـ: $g(x) = 2x - \frac{1}{x}$

دالتها الأصلية G على المجال $]\infty + \infty$ والتي تنعدم من أجل القيمة 1 معرّفة بـ:

القيمة المتوسطة للدّالة
$$3(x+1)^2$$
 على المجال $[0;1]$ تساوي:

التمرين الرابع: (08 نقاط)

$$f(x)=x+1-rac{3}{e^x+1}$$
 بالدّالة المعرّفة على المجال $f(x)=x+1$ بين المجرّفة على المجال $f(x)=x+1$

 $(2\ cm\$ وحدة الطول) $(O;ec{i},ec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

$$\lim_{x\to+\infty} f(x) = +\infty$$
 بيّن أنّ: $(1$

$$+\infty$$
 عند (C_f) عند $y=x+1$ مقارب مائل لـ Δ عند Δ عند (Δ) بيّن أنّ المستقيم (Δ) عند Δ

$$\left(\Delta
ight)$$
 ادرس وضعية (C_{f}) بالنسبة إلى

$$f'(x) = 1 + \frac{3e^x}{(e^x + 1)^2}$$
 ، $[0; +\infty[$ من المجال x من عدد حقیقی عدد حقیقی (أ (3

ب) استنتج أنّ الدّالة f متزايدة تماما على المجال $[0;+\infty[$ ثمّ شكّل جدول تغيّراتها.

$$0,28 < \alpha < 0,29$$
 بيّن أنّ المعادلة $f(x) = 0$ تقبل حلا وحيدا α

$$(C_{\!f})$$
 و (Δ) ارسم (5

$$F(x) = 3x - 3\ln(e^x + 1)$$
 بـ: $[0; +\infty[$ الدّالة المعرّفة على المجال $F(x) = 3x - 3\ln(e^x + 1)$ بـ: $[0; +\infty[$ الدّالة المعرّفة على المجال $[0; +\infty[$

$$[0;+\infty[$$
 المجال على المجال $x\mapsto \frac{3}{e^x+1}$ أصلية للدّالة الدّالة المجال أ

(
$$\Delta$$
) والمستقيم المربع مساحة الحيّز المستوي المحدّد بالمنحني (C_f) والمستقيم (Δ)

$$x = \ln 2$$
 و المستقيمين اللذين معادلتاهما $x = 0$

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2023

الموضوع الثانى

التمرين الأول: (04 نقاط)

 $u_{n+1}=rac{1}{4}u_n+3$ ، $u_{n}=u_n=0$ ومن أجل كلّ عدد طبيعي $u_0=0$ المتتالية العددية المعرّفة ب

 $u_n < 4$ ، n برهن بالتراجع أنّه: من أجل كلّ عدد طبيعي (1

بيّن أنّ (u_n) متزايدة تماما ثمّ استنتج أنّها متقاربة.

 $v_n=u_n-4$ بالمتتالية العددية المعرّفة على $\mathbb N$ بالمتتالية العددية المعرّفة المعرّفة على (v_n)

 v_0 أين أنّ المتتالية (v_n) هندسية أساسها أ $\frac{1}{4}$ يُطلب تعيين حدّها الأول أ

 $u_n=-2\left(rac{1}{4}
ight)^n+4$ ، n عيّن عبارة الحدّ العام v_n بدلالة v_n استنتج أنّه: من أجل كلّ عدد طبيعي v_n عين عبارة الحدّ العام

 $\lim_{n\to +\infty} u_n$ (=

 $T_n = u_0 + u_1 + \dots + u_n$ و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (4

 $T_n=4n+rac{4}{3}+rac{2}{3}igg(rac{1}{4}igg)^n$ ، n عدد طبیعی S_n عدد شریعی S_n احسب S_n

التمرين الثاني: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات الآتية مع التبرير.

:هي $e^{2x} + 4e^x - 5 = 0$ هي المعادلة الحلول في \mathbb{R} هي (1

 $\{-5;0\}$ (\Rightarrow $\{1;0\}$ (\downarrow

 $u_{n+1} = 5u_n - 4$ ، n عدد حقیقي و $u_0 = \alpha$ المتتالیة المعرّفة ب α (2 عدد طبیعي α) عدد حقیقي و α (2 تکون المتتالیة α (α) ثابتة من أجل:

 $\alpha = 1$ (\Rightarrow $\alpha = -4$ (\Rightarrow $\alpha = 5$ ()

 $f(x) = \frac{2e^x}{e^x + 1}$ بالدّالة المعرّفة على f (3

الدّالة الأصلية F على $\mathbb R$ للدّالة f والتي تنعدم من أجل القيمة $\mathbb R$ معرّفة بـ:

 $F(x) = \ln\left(\frac{e^x + 1}{2}\right)$ ($\Rightarrow F(x) = 2\ln(e^x + 1) - \ln 4$ ($\Rightarrow F(x) = -2\ln(e^x + 1) + \ln 4$ (\Rightarrow

:ساوي $\lim_{x\to +\infty} (x+1-e^x)$ (4

 $0 + \infty + \infty$

اختبار في مادة: الرياضيات / الشعبة: تسيير واقتصاد / بكالوريا 2023

التمرين الثالث: (04 نقاط)

$$x^3 - 6x^2 + 11x - 6 = 0$$
 المعادلة \mathbb{R} حلّ في

$$(\ln x)^3 - 6(\ln x)^2 + 11(\ln x) - 6 = 0$$
 أ) استنتج في المجال $(10x)^3 - 6(\ln x)^3 + 11(\ln x) - 6 = 0$ مجموعة حلول المعادلة

$$e^{3x}-6e^{2x}+11e^x-6=0$$
 استنتج في $\mathbb R$ مجموعة حلول المعادلة (ب

$$\ln(x^3 - 6x^2 + 11x - 5) \ge 0$$
 المتراجحة $[2; +\infty]$ المجال على المجال (3

التمرين الرابع: (08 نقاط)

$$f(x) = x^2 - x - \ln x$$
 :ب] $0; +\infty$ الدّالة المعرّفة على المجال f

$$\left(o; \overrightarrow{i}, \overrightarrow{j} \,
ight)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f} \,
ight)$

ا أيا احسب النتيجة هندسيا.
$$\lim_{x \to 0} f(x)$$
 النتيجة هندسيا.

$$\lim_{x \to +\infty} f(x) = +\infty : ٺن أٺ: (-1)$$

$$f'(x) = \frac{(2x+1)(x-1)}{x}$$
 ، $]0; +\infty[$ من المجال x عدد حقیقی x من المجال عدد عقیقی (1) من المجال x

$$m{\psi}$$
 استنتج أنّ الدّالة f متناقصة تماما على b b ومتزايدة تماما على b متناقصة تماما على أبيراتها.

$$2$$
 عيّن معادلة لـ $T)$ المماس للمنحني الفاصلة (C_f) عيّن معادلة لـ عيّن عادلة الفاصلة (T

$$(C_f)$$
 و (T) احسب (3) احسب (4

$$F(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + x - x \ln x$$
 بالدّالة المعرّفة على المجال $[0; +\infty[$ بين المجال $[0; +\infty[$

$$]0;+\infty$$
أ أصلية للدالة f على المجال F أُل تحقّق أنّ

ب) احسب مساحة الحيّز المستوي المحدّد بالمنحني
$$(C_f)$$
 وحامل محور الفواصل والمستقيمين اللذين معادلتاهما $x=3$ و $x=1$