Ecole Préparatoire en Sciences Economiques, Commerciales et Sciences de Gestion

Examen de Statistique Descriptive

<u>1^{ére} Année</u> <u>Durée: (03) Heures</u> <u>Draria: 31/01/2012</u>

Exercice 1: (08 points)

I) Soit la répartition des salaires journaliers des employés døune usine « A » :

Salaires (10 ² DA)	[5, 6[[6, 7[[7, 8.5 [[8.5, 9[[9,10[
Nombre døemployés	120	190	240	100	50

- 1. Déterminer la population statistique, le caractère étudié et sa nature.
- 2. Tracer løhistogramme des effectifs et le polygone des effectifs.
- 3. Déterminer la valeur du mode (par le calcul).
- 4. Déterminer la valeur de la médiane graphiquement et par le calcul, interpréter le résultat.
- 5. Déterminer lécart interquartile (intervalle interquartile).
- 6. Quel est le nombre dœmployés qui perçoivent un salaire compris entre 600 et 800 DA par jour.
- II) Soit la répartition des salaires journaliers des 620 employés dœune usine « B » :

Salaires (10 ² DA)	[5, 6[[6, 7[[7, ? [[?, 9[[9, 10[
Nombre døemployés	100	80	240	160	?
Centre de classe			7.25		

- 1. Compléter le tableau.
- 2. Evaluer la dispersion relative des salaires de chacune des usines. En déduire laquelle des usines possède les salaires les plus homogènes (les moins dispersés).
- **III**) Le syndicat des employés de løusine « A » a demandé une augmentation des salaires de 16% pour chaque employé. Quel sera le montant du salaire journalier moyen dans le cas de cette augmentation.

Exercice 2: (02.5 points)

La production døun bien « Y » était de 1820 unités en 2005.

- 1. Sachant que la production du bien « Y » a connu une augmentation de 3% entre 2004 et 2005, calculer la production de 2004.
- 2. La production du bien « Y » a connu les taux de croissance successifs suivants :

Périodes	2 ans	1 an	1 an	3 ans
Taux de croissance	3%	6%	-3%	2%

Calculer le taux de croissance annuel moyen

Exercice 3: (01.5 points)

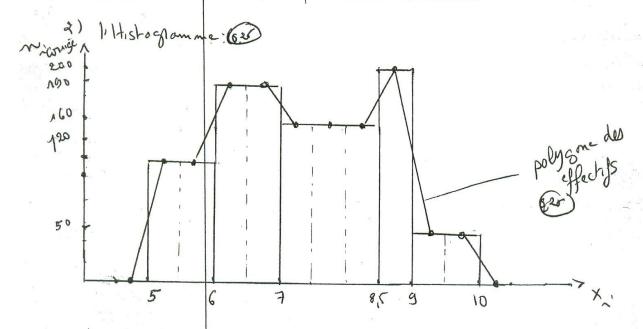
Choisissez la (les) bonne (s) réponse (s) :

- 1) Quand les amplitudes sont inégales, pour dessiner léhistogramme :
 - 1. On calcule løtendu.
 - 2. On corrige les effectifs.
 - 3. On calcule les effectifs cumulés.
 - 4. On ne corrige pas les effectifs.
- 2) Pour calculer la moyenne arithmétique dans le cas døun caractère quantitatif continu :
 - 1. On calcule les effectifs corrigés.
 - 2. On calcule les centres de classe.
 - 3. On calcule les effectifs cumulés.
 - 4. On calcule løétendu.
- 3) Løintervalle (løécart) interquartile :
 - 1. Contient 50% des observations.
 - 2. Est égal à Q_3 - Q_1 .
 - 3. Contient 20% des observations.
 - 4. Est égal à Q_1 - Q_3 .
- 4) La représentation graphique correspondant au cas quantitatif continu est :
 - 1. Løhistogramme.
 - 2. Le diagramme en bâtons.
 - 3. La courbe en escalier.
 - 4. La courbe cumulative.

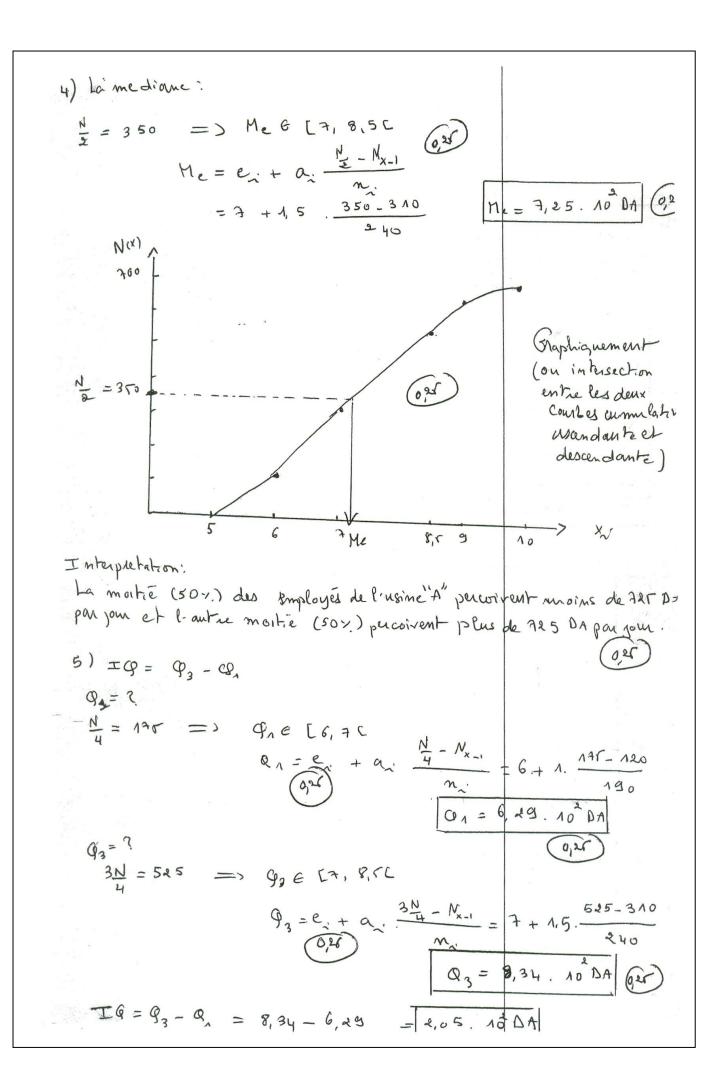
« Bon courage »

Corrigé (Examen 1 Semestre)

Statistique descriptive


Grancice O1: 8pts

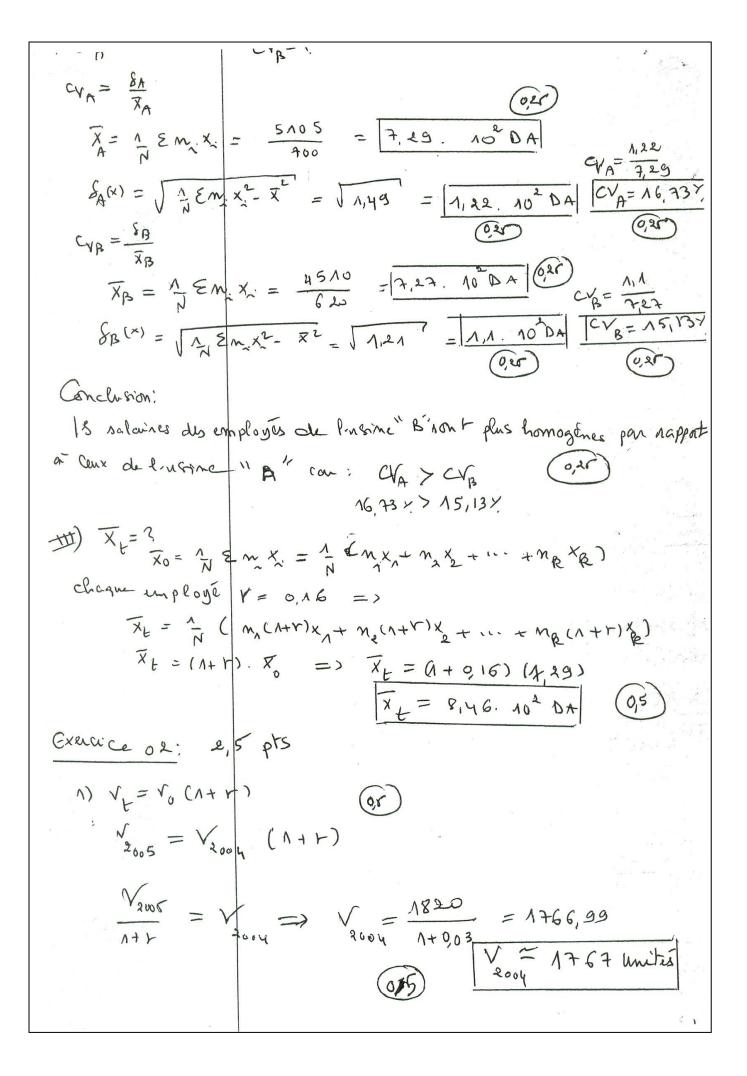
I) 1) La population statistique: les employés de l'usine "A" (cer

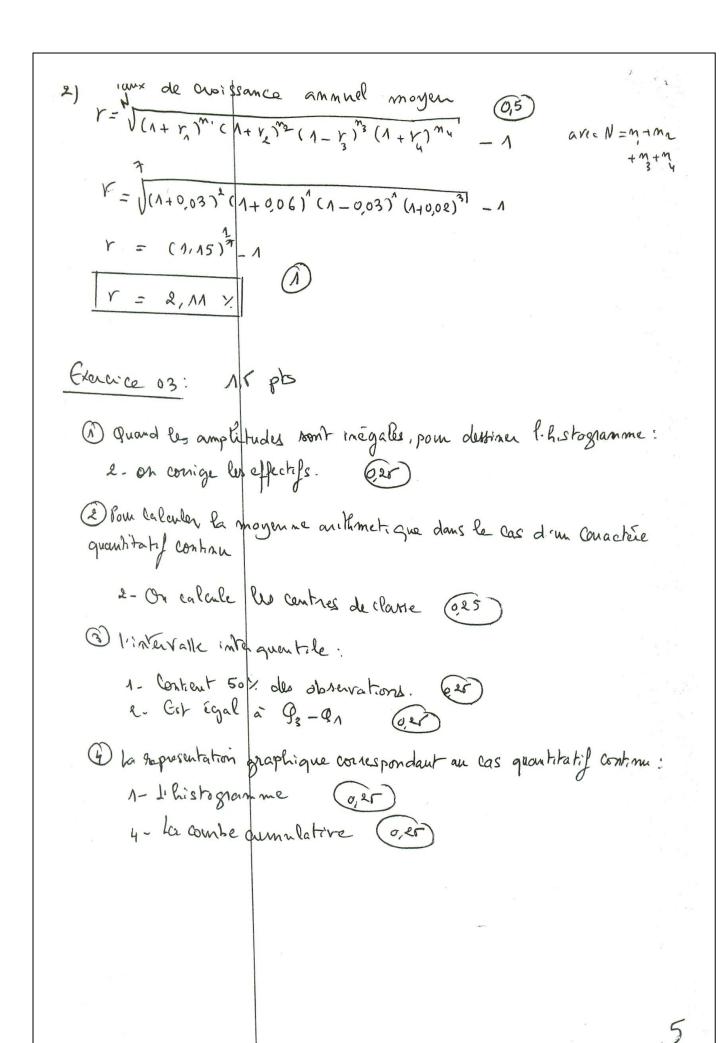

Caractère : le salaire journaher Nature : quantitatif continu

	-	_
1		-
(0 8	.6

			05	0,0			
XX	n.	0	Conigi	N(X)	C,	m.x	n x2
[5,6E	120	1	120	120	5,5	660	3630
T6,70	190	1	190	310	6,5	1235	8027,5
[7,8,5]	340	1,5	160	350	7,75	1860	144 15
[8,5,9 E		0,5	200	650	8,75	875	7656,25
[9,10[_		50	700	9,5	475	4512,5
	200			_	_	C 405	200

$$M_0 \in \Sigma 8,5$$
, DC $M_0 = e_1 + \alpha_1 \frac{\Delta_1}{\Delta_1 + \Delta_2}$


$$M_{C4,8C} = x = 3$$


n
[n [n [n] n] n [n] n [n] n] n] n [n] n] n] n [n] n] n] n] n [n] n] n] n] n [n] n] n] n] n [n] n] n] n] n [n] n] n] n [n] n] n] n [n] n [n] n] n [n] n] n [n] n [n] n] n [n] n] n [n] n [n] n [n] n] n [n]

I)

Χ.	w.	C	mx:	Nax 2
£5,60	100	5,5	550	3025
[6,70	80	6,5	520	3380
(7, 7, C	440	7,65	1740	12615
(28,90	2	8,25	1320	V08d0
] ON , C		9,50	380	3610
Total	620	_	4 540	33520

$$M_5 = 660 - (m_1 + m_2 + m_3 + m_4) = 620 - 580 = 40$$

