République Algérienne Démocratique et Populaire Ministère de L'Enseignement Supérieur et de la Recherche Scientifique Université Abderahmane Mira-Bejaia Faculté de Technologie Département de Génie des Procédés

Cours de Transfert de Chaleur

Chapitre 3
Convection thermique

Proposé par :

Mr Abdelhafid Dib

Année Universitaire 2013-2014

Table des matières

3.1. Introduction	3
3.2. Principe	3
3.3. Paramètres significatifs en transfert convectif	3
3.4. Notion de température moyenne du fluide	4
3.5. Revue de Corrélations	7
3.5.1. Convection forcée	7
a. Ecoulements externes	7
b. Ecoulements internes : Tubes et surfaces confinées	1
3.5.2. Convection naturelle	2
a. plaques (tubes) verticales	2
b. cylindre horizontale	2
c. sphère	2
d. plaques horizontales	2

3.1. Introduction

La convection thermique est un phénomène d'échange de chaleur entre une surface solide et un fluide en mouvement ayant des températures différentes. Les mouvements de ce fluide ont pour effet de renouveler perpétuellement les particules au contact de la surface et par conséquent d'en accélérer les échanges de chaleur. Ce mouvement peut être forcé (pompe, ventilateur etc..) ou naturel (sous l'effet de la variation de la densité avec la température et/ou sous l'effet de la pesanteur), on parle alors de convection forcée ou convection naturelle. D'un point de vue phénoménologie, la convection thermique n'est pas un mode "propre " au même titre que la conduction, mais un phénomène couplé qui résulte de deux mécanismes :

- une conduction thermique immédiate au voisinage de la surface(déplacement microscopique) où la vitesse du fluide est presque nulle
- l'énergie ainsi communiquée au fluide (dans le cas d'une surface chaude) se trouve ensuite entraînée par l'écoulement (déplacement macroscopique).

3.2. Principe

Les mesures de vitesses dans les écoulements (laminaire ou turbulent) réalisées proche de la paroi ont permis de dévoiler des zones connues sous le nom de couches limites et dans lesquelles les variations de vitesse, température et concentration sont localisées (voir fig.). La quantité de chaleur transmise par convection entre une paroi solide de

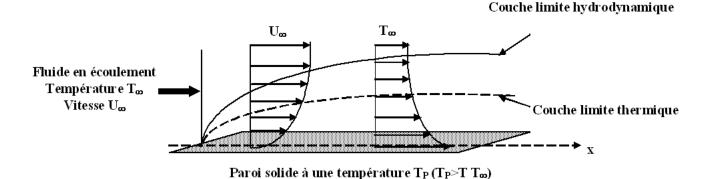


Fig. 1: Couches limites

surface S ayant une température T_p et un fluide en écoulement ayant une température T_∞ $(T_p > T_\infty)$ est donnée par :

$$q_x = \frac{\phi_x}{S} = \overline{h} \left(T_p - T_\infty \right) / W.m^{-2}$$
 (1)

- $-\phi_{\rm x}$ est le flux échangé entre la paroi solide de surface S et le fluide / W
- q_x est le flux échangé par unité de surface (densité de flux) / W.m⁻²
- S est la surface d'échange / m²
- $-\overline{h}$ est le coefficient moyen de transfert de chaleur par convection / W.m $^{-2}$.C $^{-1}$

3.3. Paramètres significatifs en transfert convectif

a. nombre de Prandtl

$$\Pr = \frac{\nu}{\alpha} = \frac{\mu C_p}{\lambda} \tag{2}$$

- $-\nu$ est la viscosité cinématique / $m^2.s^{-1}$
- $-\alpha$ est la diffusivité thermique / $m^2.s^{-1}$
- $-\mu$ est la viscosité dynamique / kg.m⁻¹.s⁻¹

- C_p est la chaleur massique / $J.kg^{-1}.C^{-1}$
- λ est la conductivité thermique du milieu $\ /$

b. nombre de Reynolds

$$Re_{L_{ref}} = \frac{\overline{u}L_{ref}}{\nu} \tag{3}$$

- $L_{\rm ref}$ est une longueur de référence caractéristique $\ / \ \ m$
- $-\overline{u}$ est la vitesse moyenne du fluide / m.s⁻¹
 - pour un écoulement parallèle à une plaque plane; $L_{ref} = L$ (fig. 1a)
 - pour un écoulement externe perpendiculaire à une conduite horizontale de diamètre d; $L_{ref} = d$ (fig. 1b)
 - pour un écoulement interne dans une conduite de diamètre d; $L_{ref}=d_h=\frac{4S_p}{P_m}=d$ (fig. 1c) pour un écoulement dans un espace annulaire d'épaisseur e; $L_{ref}=d_h=\frac{4S_p}{P_m}=2e$ (fig. 1d))

c. nombre de Nusselt

$$\overline{Nu}_{L_{ref}} = \frac{\overline{h}L_{ref}}{\lambda_f} \tag{4}$$

d. nombre de Grashof

$$Cr_{L_{ref}} = \frac{L_{ref}^3 \beta \rho^2 g \Delta T}{\mu^2}$$
 (5)

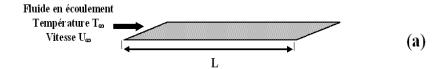
e. nombre de Rayleigh

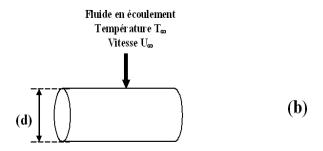
$$Ra_{L_{ref}} = Cr_{L_{ref}}.Pr = \frac{L_{ref}^{3}\beta g\Delta T}{\alpha\nu}$$
(6)

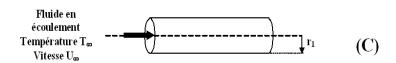
- $-\beta$ est le coefficient de dilatation volumique du fluide / K⁻¹; pour un gaz parfait $\beta = \frac{1}{T_{co}}$
- $-\rho$ est la masse volumique du fluide / kg.m⁻³
- g accélération de la pesanteur / m.s⁻²
- $-\Delta T = T_P T_\infty$ est l'écart de température paroi-fluide / °K

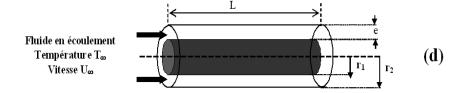
3.4. Notion de température moyenne du fluide

Les propriétés physiques du fluides (viscosité, conductivité, chaleur massique, etc.) sont généralement calculées à la température moyenne du fluide :


- elle peut correspondre à la température prise par le fluide sur la surface intérieure en contact avec l'écoulement. Elle est appelée, dans ce cas, la température de film ou de surface T_f (voir fig. 3a):


$$T_{\rm f} = \frac{1}{2} \left(T_{\rm p} + T_{\infty} \right) \tag{7}$$


- pour les écoulements internes en conduites (fig. 3b), la température moyenne peut être associée à là la température du mélange $T_{\rm m}$


$$T_{\rm m} = \frac{1}{2} \left(T_{\rm e} + T_{\rm s} \right)$$
 (8)

- T_P est la température de la plaque (surface) sur laquelle le fluide s'écoule
- T_{∞} est la température du fluide
- T_e et T_s sont les températures d'entrée et de sortie du fluide

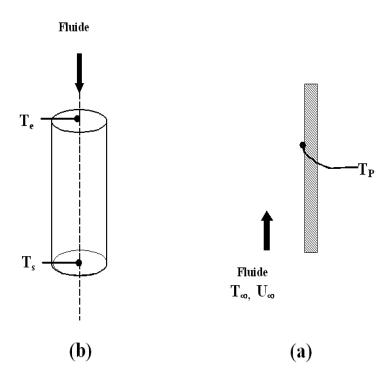


Fig. 3 : Température moyenne du fluide

3.5. Revue de Corrélations

Souvent, c'est au travers de corrélations empiriques entre nombres adimensionnels que le coefficient de transfert de chaleur moyen \bar{h} est accessible, étant donné que la complexité des situations réelles en général n'autorise pas de solutions théoriques. Dans ce qui suit, la présentation de corrélations sera limitée à des configurations de systèmes ayant eu ou pouvant éventuellement avoir de l'intérêt dans la pratique industrielle.

<u>N.B</u>: Il ne faut pas oublier que ces corrélations n'ont souvent qu'un domaine limité de validité pas toujours explicite et qu'il faut les utiliser avec beaucoup de précautions.

Convection forcée

a. Ecoulements externes

a.1. écoulement sur une plaque plane

Corrélation		Conditions
$Nu_x = 0,332Re_x^{1/2}Pr^{1/3}$	Laminaire	$Re \le 5.10^5; 0.6 \le Pr \le 50$
$\overline{Nu}_{L} = 0,664 Re_{L}^{1/2} Pr^{1/3}$	//	//
$Nu_x = 0,565 Re_x^{1/2} Pr^{1/2}$	Laminaire	$Re \le 5.10^5; Pr << 1$
$\overline{\mathrm{Nu}}_{\mathrm{L}} = 1,13\mathrm{Re}_{\mathrm{L}}^{1/2}\mathrm{Pr}^{1/2}$	//	//
$Nu_x = 0,029 Re_x^{4/5} Pr^{1/3}$	Turbulent - développé	$Re \ge 5.10^5; 0.6 \le Pr \le 60$
$\overline{Nu}_{L} = 0,036 Re_{L}^{4/5} Pr^{1/3}$	//	//
$\overline{Nu}_{L} = \left(0,036 Re_{L}^{4/5} - 871\right) Pr^{1/3}$	Mixte (lam puis turb)	${ m Re_L} \ge 5.10^5; ~{ m Re_{cr}} = 5.10^5$
,		$0.6 \le \Pr \le 60$
Gaz et liquide	s : propriétés déterminées à $T_{\rm f}$	

Tab. 1 – convection externe : plaque plane

a.2. écoulement autour d'une sphère

Corrélation	Conditions
$\overline{\mathrm{Nu_d}} = 2 + \left(0.4\mathrm{Re_d^{1/2}} + 0.06\mathrm{Re_d^{2/3}}\right)\mathrm{Pr^{0.4}}\left(\frac{\mu}{\mu_\mathrm{p}}\right)^{0.25}$	$3, 5 < \mathrm{Re_d} < 8.10^4$
	$0,7 < \Pr < 380$; $1 < \frac{\mu}{\mu_p} < 3,2$
Gaz et liquides : proprié	étés déterminées à T_{∞}

Tab. 2 – convection externe : autour d'une sphère

a.3. écoulement perpendiculaire à un cylindre

Corrélation		Cond	itions
$\overline{\mathrm{Nu}}_{\mathrm{de}} = \mathrm{CRe}_{\mathrm{de}}^{\mathrm{m}}$			
	$\mathrm{Re}_{\mathrm{de}}$	\mathbf{C}	m
	0,4 - 4	0,989	0,330
$U_{\infty} \longrightarrow ($ $) d_{e}$			
July Tale	4 - 40	0,911	0,385
	40 - 4000	0,683	0,466
	4000 - 40000	0,193	0,618
	40000 - 400000	0,027	0,805
$U_{\omega} \longrightarrow \bigcirc d_{e}$			
	$5.10^3 - 10^5$	0,222	0,588
$U_{\omega} \longrightarrow \boxed{d_e}$	0.20 20	٥,	3,333
$\mathbf{O}_{\omega} \longrightarrow \mathbf{U}_{\mathbf{e}}$	$5.10^3 - 10^5$	0,092	0,675
$U_{\infty} \longrightarrow \bigcirc \uparrow d_{e}$			
	$5.10^3 - 10^5$	0,138	0,638
u .			
$U_{\omega} \longrightarrow \boxed{\qquad \qquad } d_{e}$	$1,95.10^4 - 10^5$	0,035	0,782
$U_{\scriptscriptstyle{\infty}} \longrightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$,	,	,
$\mathbf{o}_{\mathbf{w}} \longrightarrow \bigcup_{\mathbf{u}_{\mathbf{e}}} \mathbf{u}_{\mathbf{e}}$	$4.10^3 - 1, 5.10^4$	0,205	0,731
<u> </u>	1,0.10	3,200	J,101
G_{ℓ}	az : propriétés déterminées à T _f		

Tab. 3 – convection externe :gaz autour d'un cylindre

a.4. écoulement perpendiculaire à un cylindre circulaire

Corrélation	Conditions
$\overline{\text{Nu}_{\text{de}}} = \left(0.4\text{Re}_{\text{de}}^{1/2} + 0.06\text{Re}_{\text{de}}^{2/3}\right) \text{Pr}^{0.4} \left(\frac{\mu}{\mu_{\text{p}}}\right)^{0.25}$	$40 < \mathrm{Re_{de}} < 10^5$
(0.67 < Pr < 300;
	$0.25 < \frac{\mu}{\mu_p} < 5.2$
μ_{p} : viscosité du fluide à la température pariétale	r p
Gaz et liquides : propriétés déterminées à T_{∞}	
\overline{N}_{e} 0.2 0.62Re _{de} ^{1/2} Pr ^{1/3} $\left\{1 + \left(\frac{Re_{de}}{2}\right)^{5/8}\right\}^{4/5}$	10 ² × D × × 10 ⁷
$\overline{Nu}_{de} = 0.3 + \frac{0.62Re_{de}^{1/2}Pr^{1/3}}{\left(1 + \left(0.4/Pr\right)^{2/3}\right)^{1/4}} \left\{1 + \left(\frac{Re_{de}}{282000}\right)^{5/8}\right\}^{4/5}$	$10^2 < \mathrm{Re_{de}} < 10^7$
	$\mathrm{Re_{de}Pr} > 0.2$
Gaz et liquides : propriétés déterminées à T_f	

Tab. 4 – convection externe :
autour d'un cylindre circulaire $\,$

a.5. écoulement perpendiculaire à un faisceau de tubes cylindriques

Corrélation		Conditions
	voir tab.6 pour	$air, N_L \ge 10$
$\overline{\mathrm{Nu}}_{\mathrm{d}} = \mathrm{C_1.Re_{d.\mathrm{max}}^m}$	les valeurs de	Pr = 0.7
, -	C_1 et m	$2.10^3 < \mathrm{Re_{d,max}} < 4.10^4$
	voir tab.6 pour	autres fluides, $N_L \ge 10$
$\overline{Nu}_d = 1.13.C_1.Re_{d,max}^m Pr^{1/3}$	les valeurs de	$\Pr \ge 0.7$
-,	C_1 et m	$2.10^3 < \mathrm{Re_{d,max}} < 4.10^4$
$\overline{\mathrm{Nu}}_{\mathrm{d}}\mid_{(\mathrm{N_L}<10)}=\mathrm{C}_2.\overline{\mathrm{Nu}}_{\mathrm{d}}\mid_{(\mathrm{N_L}\geq10)}$	voir tab.7 pour C_2	si $N_{\rm L} < 10$
$\begin{split} Re_{d, max} &= \frac{\rho U_{max} d}{\mu} \\ u_{max} &= u_{\infty} \frac{S_{T}/d}{((S_{T}/d) - 1)} \\ u_{max} &= u_{\infty} \frac{S_{T}/d}{((S_{T}/d) - 1)} \\ u_{max} &= u_{\infty} \frac{2}{2((S_{d}/d) - 1)} \end{split}$		
$u_{\text{max}} = u_{\infty} \frac{S_T/d}{((S_T/d)-1)} \frac{S_T/d}{S_T/d}$	tubes alignés	S, 1/S,
$u_{\text{max}} = u_{\infty} \frac{S_1/d}{((S_T/d)-1)}$	tubes quinconce	$\frac{\mathrm{S_d}}{\mathrm{d}} > \frac{1}{2} \left(\frac{\mathrm{S_T}}{\mathrm{d}} + 1 \right)$
	tubes quinconce	$\frac{S_d}{d} \le \frac{1}{2} \left(\frac{S_T}{d} + 1 \right)$
	$ \begin{array}{c} \frac{1}{(1-c)^{2}} \frac{1}{($	$T_{\rm e}$ et $T_{\rm s}$ Temp d'entrée et de sortie $T_{\rm p}$ température pariétale nombre de tubes par colonne (rangée) $N_{\rm L}$ nombre de rangées L et d longueur et diamètre du tube
Fluide \rightarrow S_T \rightarrow S_T \rightarrow S_T \rightarrow S_T \rightarrow S_T \rightarrow	S _T	S _d d
181		(b)

Tab. 5 – convection externe : faisceau de tubes cylindriques alignés(a) quinconce(b)

propriétés déterminées à $T_{\rm f}$

				S_{T}/d							
	1.	25	1.	1.5		2.0			3.0		
$_{ m L}/{ m d}$	C_1	m	C_1	m		C_1	m		C_1	m	
alignés											
1.25	0.348	0.592	0.275	0.608		0.100	0.704		0.0633	0.752	
1.50	0.367	0.586	0.250	0.620		0.101	0.702		0.0678	0.744	
2.00	0.418	0.570	0.299	0.602		0.229	0.632		0.198	0.648	
3.00	0.290	0.601	0.357	0.584		0.374	0.581		0.286	0.608	
quinconce											
0.600	-	-	-	-		-	-		0.213	0.636	
0.900	-	-	-	-		0.446	0.571		0.401	0.581	
1.000	-	-	0.497	0.558		-	-		-	-	
1.125	-	-	-	-		0.478	0.565		0.518	0.560	
1.250	0.518	0.556	0.505	0.554		0.519	0.556		0.522	0.562	
1.500	0.451	0.568	0.460	0.562		0.452	0.568		0.488	0.568	
2.000	0.404	0.572	0.416	0.568		0.582	0.556		0.449	0.570	
3.000	0.310	0.592	0.356	0.580		0.440	0.562		0.428	0.574	

Tab. 6 – valeurs des constantes C_1 et m quand $N_L \geq 10$

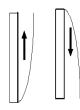
$ m N_L$	1	2	3	4	5	6	7	8	9
Tubes alignés	0,64	0,80	0,87	0,90	0,92	0,94	0,96	0,98	0,99
Tubes en quinconce	0,68	0,75	0,83	0,89	0,92	0,95	0,97	0,98	0,99

Tab. 7 – Facteur de correction C_2 quand $\mathrm{N}_\mathrm{L} < 10$

b. Ecoulements internes : Tubes et surfaces confinées

Corrélation		Conditions
$\overline{\mathrm{Nu}}_{\mathrm{d_h}} = 3.66$	Laminaire - développé	$egin{aligned} rac{\mathrm{L/d_h}}{\mathrm{Re_h Pr}} &> 0.05 \ \mathrm{Pr} &\geq 0.6 \ \mathrm{Re_h} &\leq 2300 \end{aligned}$
$\overline{Nu}_{d_h} = 1.86 \left(\frac{Re_h Pr}{L/d_h}\right)^{1/3} \left(\frac{\mu}{\mu_P}\right)^{0.14}$	Région d'entrée	$\begin{split} \frac{\mathrm{L/d_h}}{\mathrm{Re_hPr}} &< 0.05 \\ \mathrm{Pr} &\geq 0.6 \\ \mathrm{Re_h} &\leq 2300 \end{split}$
$\ell_{\rm e,th} = 0.05 d_{\rm h} Re_{\rm h} Pr$	$\ell_{\mathrm{e,th}}$: longueur d'entrée	e thermique en régime laminaire
$\begin{split} \overline{Nu}_{d_h} &= 0.023 Re_h^{4/5} Pr^n \\ n &= 0.4 \; pour \; T_p > T_m \\ n &= 0.3 \; pour \; T_p < T_m \end{split}$	Turbulent - développé	$\begin{array}{c} L/d_h > 10 \\ 0.6 < Pr \leq 160 \\ Re_h \geq 5.10^3 \end{array}$
$\overline{Nu}_{d_h} = 0.027 Re_h^{4/5} Pr^{1/3} \left(\frac{\mu}{\mu_P}\right)^{0.14}$	Turbulent - développé	$\begin{split} L/d_h > 10 \\ 0.6 < Pr \leq 167000 \\ Re_h \geq 5.10^3 \end{split}$
$\overline{\mathrm{Nu}}_{\mathrm{d_{h}}} = 5 + 0.025 \left(\mathrm{Re_{d} Pr}\right)^{0.8}$	Turbulent - développé métaux liquides ($Pr < 0.02$	${\rm L/d_h > 60} \\ {\rm Re_d Pr > 100}$
$\phi = \overline{h} A_s \Delta T_m \left\{ egin{array}{l} \Delta T_m = rac{(T_p - T_e)}{\ln [(T_p - T_e) - (T_e)]} \end{array} ight.$	$A_{\rm s} = { m surface \ d'\'echange}$ $\frac{1}{10000000000000000000000000000000000$	$\Delta T_{\rm m}$: moyenne logarithmique $A_{\rm s} \ {\rm surface} \ {\rm d'\acute{e}change}$ \overline{h} : coefficient d'échange moyen $T_{\rm s}: \ {\rm Temp} \ {\rm d'entr\'{e}e} \ {\rm et} \ {\rm de} \ {\rm sortie}$

 $\left\{ \begin{array}{l} \Delta T_m = \frac{\left(T_e - T_p\right) - \left(T_s - T_p\right)}{\ln\left[\left(T_e - T_p\right) / \left(T_s - T_p\right)\right]} \ refroidissement \\ & L: \ longueur \ de \ la \ g\'{e}om\'{e}trie \\ & d_h: \ diam\`{e}tre \ hydraulique \ du \ syst\`{e}me \end{array} \right.$


Température pariétale T_{P} constante Propriétés déterminées à $T_{\rm m}$

Tab. 8 – Convection interne : Tubes et surfaces confinées

3.5.2. Convection naturelle

Géométrie Corrélation Conditions

a. plaques (tubes) verticales

$$\overline{Nu}_{L} = \left\{0.825 + \frac{0.387 Ra_{L}^{1/6}}{\left[1 + (0.492/Pr)^{9/16}\right]^{8/27}}\right\}^{2} \qquad 10^{-1} < Ra_{L} < 10^{12}$$

b. cylindre horizontale

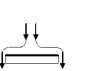
$$\overline{Nu}_{d} = \left\{0.60 + \frac{0.387 Ra_{d}^{1/6}}{\left[1 + (0.559/Pr)^{9/16}\right]^{8/27}}\right\}^{2}$$
 Ra_d < 10¹²

c. sphère

$$\overline{Nu}_d = 2 + \frac{0.589 Ra_d^{1/6}}{\left[1 + (0.469/Pr)^{9/16}\right]^{4/9}} \qquad \qquad Ra_d < 10^{11} \quad , \ Pr \geq 0.7$$

d. plaques horizontales

- surface chaude au dessus ou surface froide au dessous



$$\begin{aligned} \overline{Nu}_L &= 0.54 Ra_L^{1/4} \\ \overline{Nu}_L &= 0.15 Ra_L^{1/3} \end{aligned}$$

$$10^4 < Ra_L < 10^7$$
$$10^7 < Ra_L < 10^{11}$$

 $10^5 < \mathrm{Ra_L} < 10^{10}$

- surface froide au dessus ou surface chaude au dessous

$$\overline{Nu}_{L} = 0.27 Ra_{L}^{1/4}$$
 Température pariétale T_{P} constante

Propriétés déterminées à T_f

Tab. 9 – Convection naturelle