
Mécaniciens 5ème semestre

EXERCICE TRI 2

Dans le circuit ci-dessus, les caractéristiques des trois transformateurs T₁, T₂ et T₃ sont définies comme suit :

	Puissance apparente nominale MVA	U _{1N} / U _{2N} kV / kV	u _{cc} p.u.
T1	40	110 / 20	0,14
T2	20	20 / 1,5	0,15
T3	20	20 / 1,5	0,145

La charge Z_{ch} au point C est de 38 MVA à $\cos\phi=0.9$ et $\sin\phi=0.436$ sous une tension de 1,45 kV.

- 1. Etablir un schéma équivalent général rapporté au point C et référé aux grandeurs nominales secondaires du transformateur T₃.
- 2. Calculer la puissance active consommée dans la charge ainsi que la tension au point C si la tension au point A est de 110 kV.

N.B.: on néglige les résistances vis-à-vis des réactances de court-circuit des 3 transformateurs.

CORRIGE

EXERCICE TRI 2

Détermination des paramètres

L'impédance de la charge est donnée par :

$$Z_{ch} = \frac{U_L^2}{S_{ch}} = \frac{(1,45 \cdot 10^3)^2}{38 \cdot 10^6} = 0,0553 [\Omega]$$

$$\underline{Z}_{ch} = Z_{ch} (\cos \varphi + j \sin \varphi) = 0,0553 (0,9 + j 0,436)$$

$$= 0,0498 + j 0,0241 [\Omega]$$

$$|\underline{Z}_{ch}| = 0,0553 [\Omega]$$

Transformateur T₁

Impédance nominale du primaire :

$$Z_{1 \text{ N/T}_1} = \frac{(110 \cdot 10^3)^2}{40 \cdot 10^6} = 302,5 [\Omega]$$

Comme
$$R_{ccI} << X_{ccI}$$
 , on a $Z_{ccI} \ensuremath{\,\widetilde{=}\,\,} X_{ccI}$

D'autre part, on a :

$$u_{ccI} = z_{ccI} \cong x_{ccI}$$

 $X_{ccI} = x_{ccI} \cdot Z_{1 \text{ N/T}_1} = 0.14 \cdot 302.5 = 42.35 \Omega$

Rapport de transformation:

$$\ddot{u}_{I} = \frac{110}{20} = 5.5$$

Transformateur T₂

$$Z_{1 \text{ N/T}_2} = \frac{(20 \cdot 10^3)^2}{20 \cdot 10^6} = 20 [\Omega]$$

$$X_{ccII} = X_{ccII} \cdot Z_{1 \text{ N/T}_2} = 0.15 \cdot 20 = 3 \Omega$$

$$\ddot{u}_{II} = \frac{20}{1.5} = 13,\overline{3}$$

Transformateur T₃

$$Z_{1 \text{ N/T}_3} = \frac{(20 \cdot 10^3)^2}{20 \cdot 10^6} = 20 [\Omega]$$

$$X_{\text{ccIII}} = X_{\text{ccIII}} \cdot Z_{1 \text{ N/T}_3} = 0,145 \cdot 20 = 2,9 \Omega$$

$$\ddot{u}_{\text{III}} = \frac{20}{1.5} = 13,\overline{3}$$

1. Schéma équivalent général par phase rapporté au point C:

$$X'_{ccI} = \frac{X_{ccI}}{\ddot{u}_{I}^{2} \cdot \ddot{u}_{II}^{2}} = \frac{43,25}{(5,5)^{2} \cdot (13,3)^{2}} = 0,007875 \Omega$$

$$X'_{ccII} = \frac{X_{ccII}}{\ddot{u}_{II}^{2}} = \frac{3}{(13,3)^{2}} = 0,016875 \Omega$$

$$X'_{ccIII} = \frac{X_{ccIII}}{\ddot{u}_{III}^{2}} = \frac{2,9}{(13,3)^{2}} = 0,0163125 \Omega$$

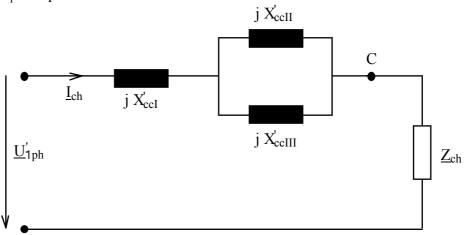
$$U_1' = \frac{110}{\ddot{u}_I \cdot \ddot{u}_{II}} = 1,5 \text{ kV}$$

$$U'_{1ph} = \frac{1.5 \cdot 10^3}{\sqrt{3}} = 866 \text{ V}$$

L'impédance nominale secondaire du transformateur T_3 vaut :

$$Z_{2 \text{ N/T}_3} = \frac{(1.5 \cdot 10^3)^2}{20 \cdot 10^6} = 0.1125 [\Omega]$$

En p.u., les éléments du schéma équivalent valent :


$$\mathbf{x}'_{\text{ccI}} = \frac{\mathbf{X}'_{\text{ccI}}}{\mathbf{Z}_{2 \text{ N/T}_3}} = \frac{0,007875}{0,1125} = 0,07 \text{ p.u.}$$

$$\mathbf{x}'_{\text{ccII}} = \frac{0,016875}{0,1125} = 0,15 \text{ p.u.}$$

$$\mathbf{x}'_{\text{ccIII}} = \frac{0,0163125}{0.1125} = 0,145 \text{ p.u.}$$

$$\underline{z}_{ch} = \frac{\underline{Z}_{ch}}{Z_{2 \text{ N/T}_3}} = \frac{0.0498 + \text{j } 0.0241}{0.1125} = 0.443 + \text{j } 0.214 \text{ p.u.}$$

$$u_1' = 1 p.u.$$

$$Z_{//} = \frac{j \ X_{ccII}' \cdot X_{ccIII}'}{X_{ccII}' + X_{ccIII}'} = j \ 0,008294 \ \Omega$$

L'impédance équivalente du circuit vaut :

$$\underline{Z}_{eq} = j \ 0.007875 + j \ 0.008294 + 0.0498 + j \ 0.0241$$

$$= 0.0498 + j \ 0.04027 [\Omega]$$

$$|\underline{Z}_{eq}| = 0.064 [\Omega]$$

$$I_{ch} = \frac{1.5 \cdot 10^3}{\sqrt{3} \cdot 0.064} \cong 13531 \text{ A}$$

La puissance active consommée dans la charge :

$$P_{ch} = 3 R_{ch} I_{ch}^2 = 3 \cdot 0,0498 \cdot (13531)^2 = 27,35 MW$$

$$U_C = Z_{ch} I_{ch} = 0,0553 \cdot 13531 = 748,2 V$$

La tension de ligne au point C :

$$U_{LC} = 748.2 \cdot \sqrt{3} \cong 1296 \text{ V}$$