الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2017

(S)

 $x \downarrow$

الشكل- 1

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

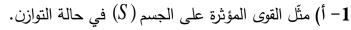
الشعبة: رياضيات، تقني رياضي

اختبار في مادة: العلوم الفيزيائية

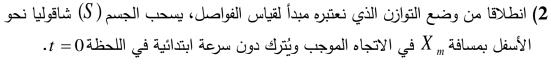
المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأوّل

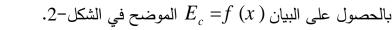

يحتوي الموضوع الأول على 05 صفحات (من الصفحة 1 من 10 إلى الصفحة 5 من 10)

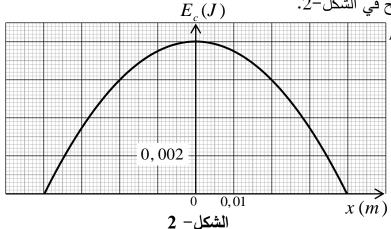
الجزء الأول: (14 نقطة)


التمرين الأول: (04 نقاط)

نهمل تأثير الهواء في كامل التمرين ، ع: تسارع الجاذبية الأرضية

نابض مرن مهمل الكتلة، حلقاته غير متلاصقة، ثابت مرونته k. يثبت من إحدى نهايتيه في نقطة ثابتة A ويعلق في نهايته الحرة جسما صلبا (S) نعتبره نقطيا، كتلته m=100 (الشكل-1).


$$x_0 = \frac{m \cdot g}{k}$$
 بيّن أن استطالة النابض x_0 في حالة التوازن تعطى بالعلاقة بالعلاقة النابض ب



أ) بتطبيق القانون الثاني لنيوتن أوجد المعادلة التفاضلية التي تحققها فاصلة المتحرك ($\chi(t)$

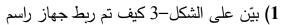
ب) تحقق أن
$$x\left(t
ight)=X_{\mathrm{m}}\cdot\cos\left(\sqrt{\frac{k}{m}}\cdot t+arphi
ight)$$
 ب يحقق أن ب السابقة.

سمحت دراسة تغيرات الطاقة الحركية E_c للجسم (S) بدلالة فاصلته χ أثناء الاهتزاز (S)

- $E_{C\,\mathrm{max}}$ أ) جد عبارة الطاقة الحركية العظمى
 - m بدلالة: ω_0 ، X_m بدلالة \overline{k}
 - $\cdot \omega_0 = \sqrt{\frac{k}{m}}$ حيث
 - ب) اعتمادا على البيان جِدْ:
 - X_m (الفاصلة الأعظمية) السعة
 - . $E_{C\,\mathrm{max}}$ الطاقة الحركية العظمى –

- T_0 نبض الحركة θ_0 ودورها الذاتى
 - ابت المرونة k للنابض.
- x = f(t) اكتب المعادلة الزمنية للحركة (4

التمرين الثاني: (04 نقاط)


التجهيز المستخدم:

مولد توتر ثابت قوته المحركة الكهربائية E=5V، جهاز راسم L الاهتزاز ذو ذاكرة، مكثفة فارغة سعتها $C=1\mu F$ ، وشيعة ذاتيتها مقاومتها مهملة، ناقل أومي مقاومته R، مقاومة متغيرة R، بادلة K، أسلاك التوصيل.

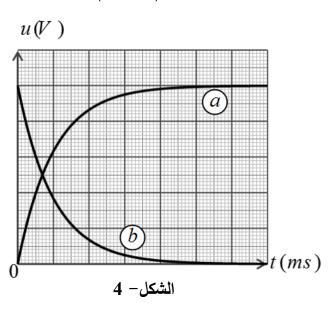
لدراسة تأثير المقاومة على نمط الاهتزازات الكهربائية تم تحقيق التركيب التجريبي (الشكل-3).

• التجربة الأولى:

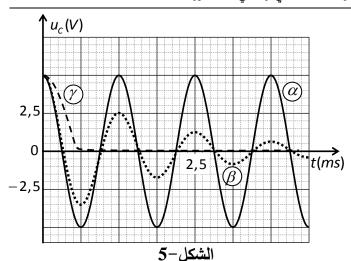
قام فوج من التلاميذ بشحن المكثفة C بوضع البادلة K في الوضع (1) وضبط الحساسية الشاقولية لراسم الاهتزاز على 1V/div والمسح الأفقى على على على 10ms/div فظهر على شاشته المنحنيين (a) و (b) و (b)

 $u_{R}\left(t\right)$ الاهتزاز لمتابعة تطور التوترين الكهربائيين

و $u_{c}\left(t
ight)$ بين طرفي كل من الناقل الأومى والمكثفة.


(b) و (a) انسب مع التعليل كل من المنحنيين (a)لتطور التوتر الكهربائي الموافق.

باستعمال المعادلة الزمنية للتوتر ($u_{C}(t)$ حدّد (tعبارتي اللحظتين t_1 و t_2 الموافقتين لشحن المكثفة بنسبة 40% و 90% على الترتيب بدلالة ثابت الزمن للدارة 7.


ب) تأكد من أن $\Delta t = t_2 - t_1 \approx 1,79\tau$ ثم حدّد بيانيا قيمة كل من t_1 و وباستغلال العلاقة السابقة R احسب قيمة T واستنتج قيمة

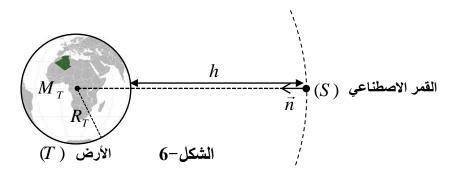
• التجرية الثانية:

K بعد شحن المكثفة تماماً وفي لحظة نعتبرها كمبدأ لقياس الأزمنة t=0 قام فوج آخر من التلاميذ بنقل البادلة إلى الوضع (2) وتسجيل في كل مرة تغيرات التوتر الكهربائي $u_{C}(t)$ بين طرفي المكثفة من أجل عدة قيم للمقاومة R' معطاة في الجدول التالي: $R'(\Omega)$ 100 5000

الشكل-3

فتحصل الفوج على المنحنيات الموضحة في الشكل-5.

- 1) ما هو نمط الاهتزازات في كل حالة؟ علّل.
 - 2) انسب كل بيان للمقاومة المناسبة.
 - R' = 0 من أجل (3
- أ) أوجد المعادلة التفاضلية لتطور التوتر الكهربائي
 - بين طرفي المكثفة بدلالة الزمن. $u_{C}\left(t
 ight)$
 - ب) حل المعادلة التفاضلية السابقة هو $u_C(t) = A \cdot \cos Bt$


عبّر عن الثابتين A و B بدلالة مميزات الدارة.

ج) استنتج قيمة الدور الذاتي T_0 للاهتزازات واحسب قيمة الذاتية L للوشيعة.

التمرين الثالث: (06 نقاط)

المُسمَّى –I لمنافسة النظام الأمريكي في التموقع الدقيق GPS والتحرر منه، وضع الاتحاد الأوروبي نظامه الخاص المُسمَّى GPS المتكون من 30 قمرا اصطناعيا يرسم كل واحد منها مسارا يُمكن اعتباره دائريا حول الأرض على ارتفاع h=23616km من سطحها.

نتم دراسة حركة أحد هذه الأقمار الاصطناعية (S) في المرجع المركزي الأرضي (الجيو مركزي) والذي يمكن اعتباره غاليليا (الشكل-6).

الكتب العبارة الشعاعية لقوة الجذب $\vec{F}_{T/S}$ التي تؤثر بها الأرض (T) على القمر الأصطناعي (S) بدلالة ثابت التجاذب الكوني (S) كتلة الأرض (S) كتلة القمر الاصطناعي (S) نصف قطر الأرض (S) والارتفاع (S) ومثّلها

على الشكل-6.

- (S) بتطبيق القانون الثاني لنيوتن في المرجع المحدد، أوجد العبارة الحرفية للسرعة المدارية V للقمر (S) بتطبيق القانون الثاني لنيوتن في المرجع المحدد، أوجد العبارة الحرفية للسرعة المدارية V للقمر (S) بدلالة: R_T , M_T , $M_$
- ب) اكتب العبارة الحرفية للدور T لحركة القمر الاصطناعي (S) بدلالة R_T ، h ، v ثم احسب قيمته.
 - ج) هل يمكن اعتبار هذا القمر جيومستقرًا؟ برّر إجابتك.

$$.G = 6,67 \times 10^{-11} SI$$
 ، $R_T = 6371 km$ ، $M_T = 5,972 \times 10^{24} kg$.

- II تعتمد محركات التوجيه للأقمار الاصطناعية والمعدّات الأخرى على بطاريات نووية تولد طاقة متحررة من جراء انبعاث جسيمات α من أنوية البلوتونيوم المشّع α ، ثابت التفكك له α .
 - 1) اكتب معادلة التحول النووي المنمذجة لتفكك

$$\cdot_z^A U$$
 نواة البلوتونيوم 238 للحصول على نواة اليورانيوم

بيّن أن المعادلة التفاضلية التي تخضع لها عدد الأنوية (2 المتفككة
$$N_d$$
 للبلوتونيوم 238 هي من الشكل:

حیث
$$N_0$$
 هو عدد أنویة $\frac{dN_d}{dt} + \lambda \cdot N_d = \lambda \cdot N_0$

البلوتونيوم الابتدائية في العيّنة المشّعة.

$$N_d(t) = A \cdot e^{-\alpha \cdot t} + B$$
 الشكل:

أوجد عبارة الثوابت: α ، α و A ، ما المدلول الفيزيائي

 $^{\circ}B$ و lpha

. (7– الشكل البيان (الشكل
$$\frac{dN_d}{dt}$$
 = $f(N_d)$ نمثل (4

 N_0 أ- باستغلال البيان استنتج قيمتي الثابتين λ و

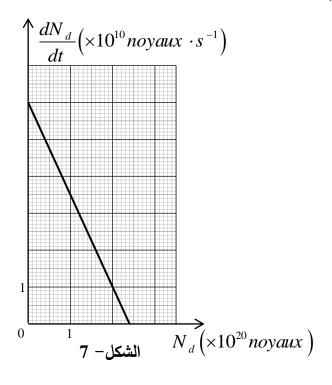
. ب-عرّف زمن نصف العمر $t_{1/2}$ للعينة المشّعة واحسب قيمته.

$$^{238}_{94}Pu$$
 من $m=1,2kg$ من من يحتوي بطارية أحد الأقمار الاصطناعية على كتلة

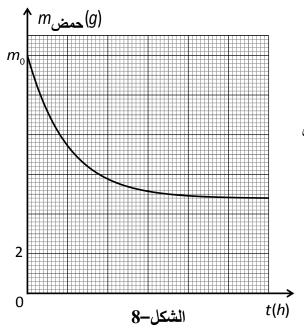
r=60% بمردود $P_e=888\,W$ بمردود كهربائية متوسطة مقدارها عند مدة اشتغالها استطاعة كهربائية متوسطة مقدارها

- . m الطاقة الكلية الناتجة عن التفكك الكلي للكتلة
 - ب) استنتج مدة اشتغال البطارية.

$$m(_2^4He) = 4,00150\,u$$
 ، $m(_Z^4U) = 234,04095\,u$ ، $m(_{92}^{238}Pu) = 238,04768\,u$. $1MeV = 1,6 \times 10^{-13}J$ ، $N_A = 6,02 \times 10^{23}mo\,\ell^{-1}$ ، $1u = 931,5MeV/c^2$


الجزء الثاني: (06 نقاط)

التمرين التجريبي: (06 نقاط)


من حمض الايثانويك M=0,60 بإذابة كتلة m=0,60 من حمض الايثانويك -I النقى في حجم V=1,0 من الماء المقطر .

 $\sigma=1,64\times10^{-2}~S\cdot m^{-1}$ في درجة الحرارة $\sigma=1,64\times10^{-2}~S\cdot m^{-1}$ فنجدها كنوعية المحلول ($\sigma=1,64\times10^{-2}~S\cdot m^{-1}$

- 1-1 اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث بين حمض الايثانويك النقي والماء.
- ب) هل التفاعل السابق تمّ بين: حمض وأساسه المرافق أو حمض اثنائية وأساس لثنائية أخرى؟

- (S) احسب التركيز المولى (S) المحلول
- (S) قدّم جدولاً لتقدم التفاعل الحادث في المحلول (S).
- ب جِدْ عبارة التركيز المولي لشوارد الهيدرونيوم $\begin{bmatrix} H_3O^+ \end{bmatrix}_f$ في المحلول (S) بدلالة σ والناقليتين الموليتين الموليتين م $\lambda_{H_{sO^+}}$ و $\lambda_{CH_{sCOO}}$
 - ج) استنتج قيمة الـ pH للمحلول الحمضي (S).
 - : الشكل عبارة كسر التفاعل النهائي $Q_{r,f}$ للتفاعل الحادث في المحلول (S) وبيّن أنها تكتب على الشكل (J-3

- $Q_{r,f} = \frac{10^{-2pH}}{c 10^{-pH}}$
- \mathbf{r} احسب ثابت التوازن K للتفاعل السابق. ماذا تستنتج
- من $n_0(mo\ell)$ من يتكون من $n_0(mo\ell)$ من من الايثانويك النقي CH_3-COOH من من كحول صيغته الجزيئية المجملة C_3H_7OH من
 - 1) سمّ التفاعل الحادث في المزيج وأذكر خصائصه.
 - 2) اكتب معادلة التفاعل الكيميائي الحادث.
 - 3) يمثل البيان (الشكل-8) تغيرات الكتلة m للحمض المتبقى أثناء التفاعل بدلالة الزمن t.
 - أ) حدّد التركيب المولي للمزيج عند التوازن الكيميائي.
 - ب) احسب مردود التفاعل وحدد من بين الصيغتين التاليتين:

. سيغة الكحول المستخدم، مع التعليل $CH_3-CHOH-CH_3$ ؛ $CH_3-CH_2-CH_2-OH$

- ج) اكتب الصيغة نصف المنشورة للمركب العضوي الناتج واذكر اسمه.
- الماء إلى من الماء الم
 - ب) حدّد التركيب المولي للمزيج عند التوازن الكيميائي الجديد.

$$\lambda_{H_3O^+} = 35,0 \ mS \cdot m^2 \cdot mo\ell^{-1}$$
 , $\lambda_{CH_3COO^-} = 4,1 \ mS \cdot m^2 \cdot mo\ell^{-1}$: المعطیات : $M(H) = 1g \cdot mo\ell^{-1}$, $M(O) = 16 \ g \cdot mo\ell^{-1}$, $M(C) = 12 \ g \cdot mo\ell^{-1}$

انتهى الموضوع الأول

الموضوع الثانى

يحتوي الموضوع الثاني على 05 صفحات (من الصفحة 6 من 10 إلى الصفحة 10 من 10)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

لتقدير عمر بعض الصخور، يلجأ العلماء إلى طرائق وتقنيات مختلفة تعتمد أساسا على قانون التناقص الاشعاعي من بين هذه التقنيات تقنية التأريخ بواسطة اليورانيوم.

تتفكك أنوية اليورانيوم المشع U^{238}_{92} تلقائيا وفق سلسلة من التفككات lpha و التي تُنمذج بالمعادلة التالية:

$$^{238}_{92}U \rightarrow x\alpha + y\beta^{-} + ^{206}_{82}Pb$$

 eta^- ها المقصود بlpha و أ-1

- (y) بتطبيق قانوني الانحفاظ، أوجد قيمتيّ العددين (y)
- ي بفرض أن عينة صخرية تحتوي على اليورانيوم U^{238}_{92} فقط لحظة تشكلها (t=0) التي نعتبرها لحظة بداية التأريخ وأن الرصاص V^{206}_{82} الموجود في العينة ناتج عن تفكك اليورانيوم V^{238}_{92} فقط.

 $_{92}^{238}U$ عند لحظة القياس t_{m} تكون النسبة المئوية الكتلية للرصاص 206 تساوي 31 من الكتلة الابتدائية لليورانيوم

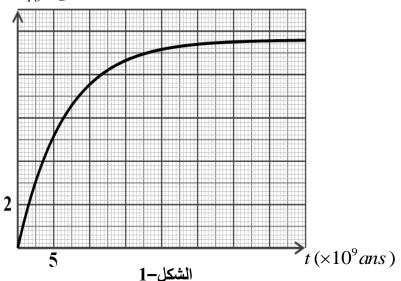
t عند لحظة t عند التناقص الاشعاعي، أثبت أن كتلة الرصاص في العينة عند لحظة t

 $m_{Pb}(g)$

تعطى بالعلاقة: $m_{Ph}\left(t\right) = 0.866 \cdot m_{U}\left(0\right)\!\left(1\!-\!e^{-\lambda t}\right)$

حيث ٨ ثابت التفكك لليورانيوم 238 .

3) يُمثل البيان الموضح في الشكل-1


تغيرات كتلة الرصاص المتشكل بدلالة

$$.m_{Pb}=f\left(t
ight)$$
 الزمن

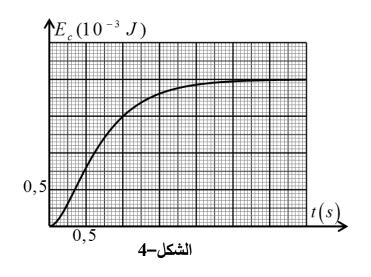
اعتمادا على البيان جد:

- أ) عدد أنوية اليورانيوم 238 الابتدائية
 - في العينة المدروسة $N_{U}\left(0
 ight)$
- $t_{1/2}$ نصف العمر اليورانيوم 238.
- ج) عين بيانيا عمر العينة، ثم تحقق حسابيا من النتيجة.
- 4) فسر تواجد اليورانيوم $\frac{238}{92}U$ في القشرة الأرضية إلى يومنا هذا.

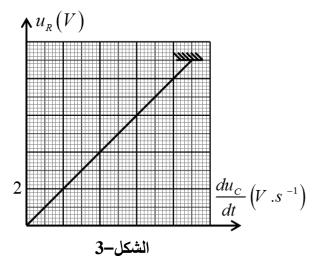
$$N_A = 6.02 \times 10^{23} \, mol^{-1}$$
يعطى: عمر الأرض $t = 4.5 \times 10^9 \, ans$ عدد أفوڤادرو

التمرين الثاني: (04 نقاط)

نحقق التركيب التجريبي الموضح في الشكل-2 والمتكون من:


- . E مولد مثالي للتوتر الكهربائي، قوته المحركة الكهربائية -
 - مكثفة فارغة سعتها -
 - ناقل أومي مقاومته R متغيرة.
 - وشيعة ذاتيتها L ، مقاومتها مهملة ·
 - . *k* بادلة -
 - t=0 هي الوضع (1) في اللحظة k نضع البادلة (1) في الحظة
 - أ) ماهي الظاهرة التي تحدث في الدارة؟
- u_R ، u_c التوترين المار في الدارة واتجاه الاصطلاحي للتيار الكهربائي المار في الدارة واتجاه التوترين u_R
- $u_{c}\left(t
 ight)$ بتطبيق قانون جمع التوترات، اكتب المعادلة التفاضلية التي يحققها التوتر الكهربائي بين طرفي المكثفة (أ-2
 - $u_{C}(t)$ = $A+Be^{-lpha\,t}$: من الشكل حلا من السابقة حلا من التفاضلية التفاضلية السابقة حلا من الشكل

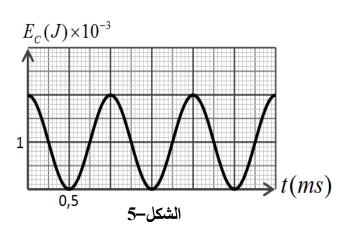
حيث: $A:(B \neq 0)$ مقادير ثابتة يطلب تحديد عباراتها بدلالة المقادير المميزة للدارة.


ج) باستعمال التحليل البعدي، أوجد وحدة قياس المقدار lpha في جملة الوحدات الدولية.

مكنت برمجية خاصة من رسم بيانيّ العلاقتين: $u_R=f\left(rac{du_c}{dt}
ight)$: مكنت برمجية خاصة من رسم بيانيّ العلاقتين (3

(t عند اللحظة عند اللحظة المخزنة في المكثفة عند اللحظة الشكلين (3) الشكلين الطاقة المخزنة في المكثفة اللحظة اللحظة المخزنة المحتفظة اللحظة اللحظة اللحظة اللحظة المحتفظة الم

الشكل-2



باستغلال البيانين أوجد:

- au أ) ثابت الزمن للدارة au
- . E القوة المحركة الكهريائية للمولد

ج) سعة المكثفة · C

- د) مقاومة الناقل الأومى R.
- 4) بعد إتمام شحن المكثفة، نجعل مقاومة الناقل الأومي (R=0) ونضع البادلة في الوضع (2) عند اللحظة t=0.
 - أ) اكتب المعادلة التفاضلية التي يحققها التوتر الكهربائي $u_{C}\left(t
 ight)$ بين طرفي المكثفة.

ب) بيّن أن:
$$u_{C}(t)=A\cos(\frac{1}{\sqrt{LC}}t)$$
 حلا للمعادلة (ب

التفاضلية السابقة ثم حدد عبارة كل من الدور الذاتي للاهتزازات (T_0) والعدد A بدلالة المقادير المميزة للدارة

ج) يمثل البيان الموضح في الشكل-5 تغيرات الطاقة

المخزنة في المكثفة $E_c(t)$ بدلالة الزمن.

باستعمال البيان استنتج قيمة:

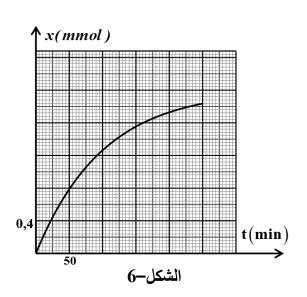
الدور الذاتي (T_0) للاهتزازات.

- ذاتية الوشيعة (L).

التمرين الثالث: (06 نقاط)

اليوريا أو البولة $CO(NH_2)_2$ هي من الملوثات، تتواجد في فضلات الكائنات الحية وتتفكك ذاتيا وفق تفاعل بطيء وتام ينتج عنه شوارد الأمونيوم NH_4^+ وشوارد السيانات CNO^- وفق معادلة التفاعل التالية:

$$CO(NH_2)_2(aq) = NH_4^+(aq) + CNO^-(aq)$$


- $c=2,0.10^{-2}\,mol.L^{-1}$ من محلول اليوريا تركيزه V=100mL من محلول اليوريا تركيزه V=100mL نخصًر حجما V=100mL من مختلفة (نهمل تأثير ونضعه في حمام مائي درجة حرارته V=100mL ثم نقيس الناقلية النوعية للمحلول عند أزمنة مختلفة (نهمل تأثير الشوارد V=100mL في ناقلية المحلول).
 - 1) أنشئ جدولا لتقدم التفاعل الحاصل ثم حدّد قيمة التقدم الأعظمي x_{max} للتفاعل.
 - كا اكتب عبارة تركيز شوارد الأمونيوم $^{+}_{4}$ بدلالة الناقلية النوعية σ للمحلول والناقليات المولية الشاردية.
 - .V اكتب العلاقة بين تركيز شوارد ${N\!H_4}^+$ في المحلول وتقدم التفاعل X وحجم المحلول X
 - x استنتج العلاقة بين الناقلية النوعية σ وتقدم التفاعل . واحسب قيمة الناقلية العظمى $\sigma_{\rm max}$ عند نهاية التفاعل
 - أثبت أنّ تقدم التفاعل في اللحظة t يعطى بالعلاقة:

$$x(t) = x_{\text{max}} \frac{\sigma(t)}{\sigma_{\text{max}}}$$

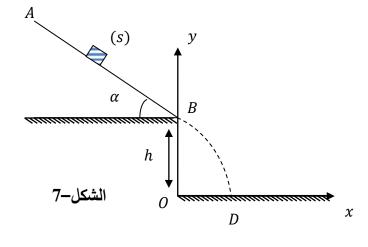
- (6) يمثل الشكل-6 منحنى تطور تقدم التفاعل بدلالة الزمن.
 - أ) اكتب عبارة السرعة الحجمية للتفاعل ثم

بيّن اعتمادا على المنحنى كيفية تطورها مع الزمن.

- ب) عرف زمن نصف التفاعل $t_{1/2}$ ، ثم حدد قيمته بيانيا.
- 7) احسب تركيز شوارد $^{+}_{4}$ NH_{4}^{+} المتشكلة عند نهاية التفاعل.
- المتشكلة عند NH_4^+ المتشكلة عند NH_4^+ المتشكلة عند نهايـة التفاعـل السـابق، نعـاير حجمـا V=10mL مـن المحلـول السـابق بواسـطة محلـول هيدروكسـيد الصـوديوم تركيـزه المـولي $C_b=1.10^{-2}mol.L^{-1}$ فيحـدث التكـافؤ عند إضافة حجم قدره $V_{bE}=20mL$

- 1) أذكر البرتوكول التجريبي المناسب لهذا التفاعل مدعما إجابتك برسم تخطيطي.
 - 2) اكتب معادلة تفاعل المنمذجة لتحول المعايرة.
 - 3) احسب تركيز شوارد الامونيوم في المحلول.
 - 4) قارن قيمتها مع المحسوبة سابقا في السؤال (T-I).

 $\lambda_{CNO^{-}}=9,69\,mS.m^{2}.mol^{-1}$ و $\lambda_{NH_{4}^{+}}=11,01mS.m^{2}.mol^{-1}$: $50^{0}\,C$ يعظى: عند الدرجة


الجزء الثاني (06 نقاط):

التمرين التجريبي (06 نقاط):

نهمل في كامل التمرين تأثير الهواء

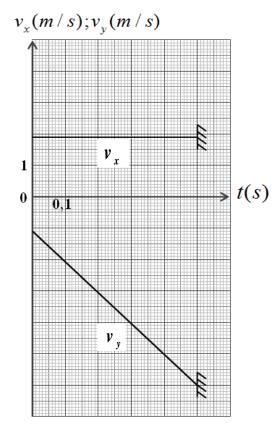
 $g = 9.81 m / s^2$ ونأخذ

قصد دراسة تأثیر قوة الاحتكاك على طبیعة حركة جسم صلب (S) كتلته m, نتركه من نقطة A أعلى مستوي مائل، زاوية ميله α وطوله AB=1m دون سرعة ابتدائية ليتحرك وفق خط الميل الأعظم باتجاه النقطة B. (الشكل -7)

I. الدراسة التجريبية:

نغير في كل مرة من شدة قوة الاحتكاك \overrightarrow{f} بتغيير الورق الكاشط الذي ينزلق عليه الجسم، فتحصلنا على النتائج التالية:

f(N)	0,5	1,0	1,5	2,0
$a(m/s^2)$	3,9	2,9	1,9	0,9


- .(S) بتطبيق القانون الثاني لنيوتن، أوجد عبارة a تسارع مركز عطالة الجسم (1).
- . \overrightarrow{f} نارسم البيان الممثل لتغيرات a تسارع مركز عطالة الجسم (S) بدلالة شدة قوة الاحتكاك (a) أرسم البيان الممثل لتغيرات a تسارع مركز عطالة الجسم (a) بدلالة شدة قوة الاحتكاك (a) أرسم البيان الممثل لتغيرات a باختيار السلم (a) بدلالة شدة قوة الاحتكاك (a)
 - m وكتلة الجسم lpha وكتلة الجسم (3
 - . B مثل الحصيلة الطاقوية للجملة (جسم (S)) بين الموضعين Aو
 - (S) بتطبيق مبدأ انحفاظ الطاقة على الجملة (جسم (5)):
 - $v_B=2.19m/s$ أوجد عبارة شدة قوة الاحتكاك \overrightarrow{f} وأحسب قيمتها من أجل أ
 - ب) تأكد بيانيا من قيمة \overrightarrow{f} السابقة.
 - يغادر الجسم (S) النقطة B ليسقط على الأرض عند .II

-7النقطة D، أنظر الشكل

 v_y يمثل الشكل-8 بيانيّ تغيرات مركبتيّ شعاع السرعة v_x و v_y و من الشكل \rightarrow \rightarrow في المعلم v_x بدلالة الزمن.

اعتمادا على البيانين:

- $\overrightarrow{ox}, \overrightarrow{oy}$ مدّد طبيعة حركة الجسم (S) في المعلم حركة الجسم (1
 - x_D أوجد قيمة كل من الارتفاع h والمدى (2
 - . D أوجد قيمة سرعة الجسم (S) عند النقطة

الشكل-8

انتهى الموضوع الثاني

العلامة		/ t \$11 a : - ti)
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
0,75	0,25 0,25	الجزء الأول (13 نقطة) التمرين الأول: (04 نقاط) التمرين الأول: (10 نقاط) المدروسة القوى: (10 نقطة) الجملة المدروسة هي الجسم (3) والقوى المطبقة هي: الجملة المدروسة هي الجسم (5) والقوى المطبقة هي: \vec{T}_0 الجملة المدروسة هي الجسم (5) والقوى المطبقة هي: \vec{T}_0
1,25	0,25 0,25 0,25 0,25	أ— المعادلة التفاضلية: بتطبيق القانون الثاني لنيوتن على الجملة جسم (S) في المرجع السطحي $\Sigma \vec{F} = m \cdot \vec{a}$ $\vec{P} + \vec{T} = m \cdot \vec{a} \Rightarrow p - T = m \cdot a$ $mg - k (x + x_0) = m \cdot a \Rightarrow mg - x_0 - kx = m \cdot a$ $mg - k (x + x_0) = m \cdot a \Rightarrow \frac{d^2x}{dt^2} + \frac{k}{m} x = 0$ $\frac{d^2x}{dt^2} + \frac{k}{m} \cdot x = 0 \cdots (1)$ $\frac{d^2x}{dt^2} + \frac{k}{m} \cdot x = 0 \cdots (1)$ $\Rightarrow x (t) = x_{-m} \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right)$ $\Rightarrow x (t) = x_{-m} \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right)$ $\Rightarrow x (t) = x_{-m} \cos\left(\sqrt{\frac{k}{m}} \cdot t + \varphi\right) \cdots (4)$ $\Rightarrow x = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -x_{-m} \left(\sqrt{\frac{k}{m}}\right)^2 \cos\left(\sqrt{\frac{k}{m}} t + \varphi\right) \cdots (4)$ $\Rightarrow x = x = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -x_{-m} \left(\sqrt{\frac{k}{m}}\right)^2 \cos\left(\sqrt{\frac{k}{m}} t + \varphi\right) = 0$

العلامة		(1 \$11 c. ta. 10 7 d. NI alto
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		3) أ- برهنة عبارة الطاقة الحركية الأعظمية:
		$E_c = \frac{1}{2} m \cdot v^2, \qquad v = -X_m \cdot \omega_0 \cdot \sin(\omega_0 t + \varphi)$
	0,25	$v_m = \pm X_m \cdot \omega_0 \Longrightarrow (E_c)_{\text{max}} = \frac{1}{2} m \cdot \omega_0^2 \cdot X_m^2$
		ب– تحديد قيم الثوابت:
	0,25	من البيان نجد:
1,5		$X_m = 4cm$: المطال الأعظمي – المطال
	0,25	$\left(E_{c} ight)_{ m max}=0,008J$ - الطاقة الحركية العظمى: $-$
	0,25	$\left(E_{c}\right)_{\max} = 0,008J \Rightarrow \omega_{0} = \sqrt{\frac{2\times\left(E_{c}\right)_{\max}}{m\cdot X_{m}^{2}}} = \sqrt{\frac{8\times10^{-3}\times2}{0,1\times16\times10^{-4}}} = 10rd/s$: ω_{0} نبض الحركة -
		$T_0 = \frac{2\pi}{\omega} = \frac{2\pi}{10} = 0,628s$: T_0 قيمة الدور الذاتي –
	0,25	-
	0,25	$\omega_0 = \sqrt{\frac{k}{m}} \rightarrow k = m \cdot \omega_0^2 = 0.1 \times 100 = 10 N/m$ قيمة ثابت المرونة k من العبارة –
		4) المعادلة الزمنية للحركة:
0,5	0,25	$X_m = 4cm$ ، $\omega_0 = 10rd/s$: الدينا
	0,25	$x\left(t\right)=0,04\cos\left(10t\right)$ ومنه: $t=0,x=X_{m}\Rightarrow\cosarphi=1\Rightarrowarphi=0$ الشروط الابتدائية
		$Y_{1} = u_{R} = M$ (04) نقاط) التمرين الثاني:
		$L, r \approx 0$ التجربة الأولى:
0,25		$C = u_C$ کیفیة ربط جهاز راسم الاهتزاز : لاحظ الشکل $C = u_C$ کیفیه ربط جهاز راسم الاهتزاز : لاحظ الشکل V
	0,25	E ملاحظة: نقلب إشارة المدخل X_2 ملاحظة: X_2 ملاحظة X_2 ملاحظة المدخل X_2 م
		$u_{\scriptscriptstyle C}(t)$ المنحنى $u_{\scriptscriptstyle C}$ يوافق تطور التوتر $u_{\scriptscriptstyle C}(t)$.
	0.25	$u_{\scriptscriptstyle R}(0)\!=\!E$ ميث ، $t=0$ التعليل: في اللحظة
0,50	0,25	$u_{C}\left(0 ight)=0$ یکون: $E=u_{R}+u_{C}$ ایکون جمع التوترات: $E=u_{R}+u_{C}$
0,50		$u_{R}(t)$ المنحنى (b) يوافق تطور التوتر
	0,25	$u_{R}\left(0 ight)=\left(u_{R} ight)_{\max}=E$ فإن $u_{R}\left(t ight)=R\cdot i\left(t ight)$ و حسب العلاقة $i\left(0 ight)=I_{0}$: $t=0$ فإن $t=0$
		(تقبل كل الإجابات الصحيحة الأخرى).

العلامة		عناصر الإجابة (الموضوع الأول)	
مجموع	مجزأة	(034/ 29-3-1) + + + + + + + + + + + + + + + + + +	
		t_2 و t_1 و (3)	
		$u_{C}\left(t\right)=E\cdot\left(1-e^{-\frac{t}{\tau}}\right)$: (a) من معادلة البيان	
		$t_1 = -\tau \cdot \ln 0, 6$. و منه $t_1 \longrightarrow u_C(t_1) = E \cdot (1 - e^{-\frac{t_1}{\tau}}) = 0,40E$	
	0,25	$t_2 = -\tau \cdot \ln 0.1$. $t_2 \longrightarrow u_C(t_1) = E \cdot (1 - e^{-\frac{t_2}{\tau}}) = 0.90E$	
1	0.25	R واستنتاج قيمة $ au$ وحساب قيمة $ au$ وحساب قيمة $ au$ واستنتاج قيمة	
	0,25	$\Delta t = au(\ln 0, 6 - \ln 0, 1) = 1,79 au$ من عبارتی t_1 و t_2 السابقتین نجد:	
		$t_2=23ms$ و $t_1=5ms$ من البيان (a) نقرأ من البيان	
	0,25	و منه: $ au=10ms$ (تقبل الإجابة بتوظيف العبارة Δt فقط).	
	0,25	$R=10{ imes}10^3\Omega$ و منه: $R=rac{ au}{C}$ و منه: $R=10{ imes}10^3\Omega$	
		التجربة الثانية:	
	0.25	1) نمط الاهتزازات في كل حالة:	
	0,25	* المنحنى $(lpha)$: اهتزازات حرة غير متخامدة (نظام دوري).	
0,75	0,25	التعليل: سعة الاهتزاز ثابتة (لا يوجد ضياع في طاقة الجملة).	
		* المنحنى (eta) : اهتزازات حرة متخامدة (نظام شبه دوري).	
	0,25	التعليل: سعة الاهتزاز تتناقص خلال الزمن (يوجد ضياع في طاقة الجملة في مقاومة الدارة بمفعول جول).	
		$*$ المنحنى (γ) : نظام γ دوري حرج. التعليل: γ توجد اهتزازات .	
		2) البيان الموافق لكل مقاومة: اعتمادا على ما سبق يوافق:	
0.25	0.25	$R'\!=\!0$. المقاومة $R'\!=\!0$	
	0,23	$R'=100\Omega$ المقاومة: $R'=100\Omega$ * المنحنى	
		$*$ المنحنى (γ) : المقاومة Ω^{000} $=$ R'	
		$R'=0$ أ- المعادلة التفاضلية لتطور التوتر $u_{C}(t)$ من أجل $u_{C}(t)$:	
		$u_C(t)+u_L(t)=0$:(LC) بتطبيق قانون تجميع التوترات في الدارة المهتزة $u_C(t)+u_L(t)=0$:(LC) بتطبيق $u_C(t)+u_L(t)=0$	
		$u_L(t) = L \cdot \frac{di(t)}{dt} = L \cdot \frac{d^2q(t)}{dt^2} = LC \cdot \frac{d^2u_C(t)}{dt^2}$ الكن:	
		$\frac{d^2 u_C(t)}{dt^2} + \frac{1}{LC} \cdot u_C(t) = 0$ و منه: $u_C(t) + LC \cdot \frac{d^2 u_C(t)}{dt^2} = 0$	
01,25	0,25	dt^{2} LC dt^{2}	

العلامة		(t.Št. c. in. tl) ž. da Nt dia
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		(LC) عبارتي الثابتين A و B بدلالة مميزات الدارة الدارة :
		$rac{d^2u_C(t)}{dt^2}$ = $-A\cdot B^2\cdot \cos Bt$ ، و منه $u_C(t)=A\cdot \cos Bt$ على م. ت. السابقة
		$A \cdot \left(\frac{1}{LC} - B^2\right) \cos Bt = 0$ بالتعویض نجد: $\theta = 0$
	0,25	$B=rac{1}{\sqrt{LC}}$ و منه: $rac{1}{LC}-B^2=0$ و منه:
	0,25	A=E :في اللحظة $t=0$ ، المكثفة مشحونة تماما، بالتالي $t=0$ المكثفة مشحونة تماما، بالتالي
		ج- قيمتي الدور الذاتي T_0 للاهتزازات و الذاتية L للوشيعة:
	0,25	$T_0 = 1,25 \times 10^{-3} s$ و منه: $T_0 = 2,5ms$ و منه: $T_0 = 2,5ms$ و منه: $T_0 = 1,25 \times 10^{-3} s$
	0.25	بالتعريف: $T_0 = 2\pi \cdot \sqrt{LC}$ و منه:
	0,25	$L = \frac{T_0^2}{4\pi^2 \cdot C} = 0,04H = 40mH$
	0,25	التمرين الثالث: (06 نقاط)
0,5	0,25	$\vec{F}_{T/S} = G \cdot \frac{m_S \cdot M_T}{(R_T + h)^2} \cdot \vec{n}$ العبارة الشعاعية لقوة الجذب: (3)
		$\overrightarrow{F}_{T/S} = G \cdot \frac{1}{(R_T + h)^2} \cdot h \cdot \frac{1}{(R_T + h)^2} \cdot h \cdot \frac{1}{(R_T + h)^2}$ $\overrightarrow{F}_{T/S} = G \cdot \frac{1}{(R_T + h)^2} \cdot h $
		2) أ- العبارة الحرفية للسرعة المدارية:
		بتطبيق القانون الثاني لنيوتن على الجملة (قمر اصطناعي) في المرجع المختار:
		$\sum \vec{F}_{ext} = m \cdot \vec{a}_n = \vec{F}_{T/S}$
	0,25	$a_n = \frac{G \cdot M_T}{(R_T + h)^2}$ وبالإسقاط على المحور الموجه نجد: $m_S \cdot \vec{a}_n = G \cdot \frac{m_S \cdot M_T}{(R_T + h)^2} \cdot \vec{n}$
		$r=R_T+h$ من جهة أخرى نعلم أن $a_n=rac{v^2}{r}$ حيث نصف القطر $a_n=rac{v^2}{r}$
1,5	0,25	$v_S = \sqrt{\frac{G \cdot M_T}{(R_T + h)}}$ ومنه: $v_S^2 = \frac{G \cdot M_T}{(R_T + h)}$:من (1) و
	0,25	$v_S = \sqrt{\frac{6,67 \times 10^{-11} \times 5,972 \times 10^{24}}{(23616 + 6371) \times 10^3}} = 3644,65 m/s$ = 3644,65 m/s
	0,25	$T = \frac{2\pi \cdot (R_T + h)}{v}$: عبارة الدور T و حساب قيمته
	0,25	$T = \frac{2\pi \times 29987000}{3644,65} \approx 51670s \approx 14,35h$:
	0,25	$T=14,35h \neq 24h$ ج $T=14,35h \neq 24h$ جا القمر الاصطناعي المستعمل في التموقع ليس جيومستقرًا.
0,25	0,25	المعادلة المنمذجة لتحول البلوتونيوم: $^{238}_{94}Pu \longrightarrow ^{234}_{92}U + ^{4}_{2}He$ المعادلة المنمذجة لتحول البلوتونيوم:

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	عاصر الإجابة (الموصوع الاول)
		: N_d المعادلة التفاضلية بعدد الأنوية المتفككة N_d
0.5	0,25	$N\left(t ight)=N_{_{0}}-N_{_{d}}\left(t ight)$ من قانون النتاقص: $A\left(t ight)=-rac{dN\left(t ight)}{dt}=-\lambda\cdot N\left(t ight)$ من قانون النتاقص:
0,5		وبالتعويض في العبارة السابقة نجد:
	0,25	$\frac{d\left(N_{0}-N_{d}\left(t\right)\right)}{dt}+\lambda\cdot\left(N_{0}-N_{d}\left(t\right)\right)=0\rightarrow\frac{dN_{d}\left(t\right)}{dt}+\lambda\cdot N_{d}\left(t\right)=\lambda\cdot N_{0}$
		B و A ، α ایجاد عبارة الثوابت A ، α
0,75	0,25	وبالتعويض في المعادلة التفاضلية نجد: $rac{dN_{d}(t)}{dt} = -lpha\cdot A\cdot e^{-lpha t}$ و $N_{d}(t) = A\cdot e^{-lpha t} + B$
0,70	0,25	$-\alpha \cdot A \cdot e^{-\alpha t} + \lambda \left(A \cdot e^{-\alpha t} + B \right) = \lambda \cdot N_0 \implies A \cdot e^{-\alpha t} \left(\lambda - \alpha \right) + \lambda \left(B - N_0 \right) = 0$
	0,23	ومنه: $lpha=\lambda$ (ثابت النشاط الإشعاعي) ؛ $B=-A=N_0$ (عدد الأنوية الابتدائية)
	0,25	$\frac{dN_d(t)}{dt} = a \cdot N_d + b \cdot \cdots \cdot (1)$ أ- المعادلة البيانية: (4
	0,25	dt " $dN_d(t) = -\lambda \cdot N_d + \lambda N_0 \cdot \cdot$
	0,25	
1,5	0,25	$\begin{cases} a = -\lambda = \tan \alpha = \frac{1}{2,4 \times 10^{20}} = -2,3 \times 10^{-3} & \Rightarrow \lambda = 2,3 \times 10^{-3} \\ b = \lambda \cdot N_0 = 6 \times 10^{10} \Rightarrow N_0 = \frac{b}{\lambda} = \frac{6 \times 10^{10}}{2,5 \times 10^{-10}} = 2,4 \times 10^{20} noyaux \end{cases}$ (1) i.e. (2) i.e. (1)
		$:t_{1/2}$ ب $-$ زمن نصف العمر $:t_{1/2}$
	0,25	التعريف: المدة الزمنية اللازمة لتفكك نصف عدد الأنوية الابتدائية المشعة.
	0,25	$t_{1/2} = \frac{Ln2}{\lambda} = \frac{0.69}{2,5 \times 10^{-10}} = 2,76 \times 10^9 s = 87,52 ans$: $t_{1/2}$
		m أ- حساب الطاقة الكلية الناتجة عن التفكك الكلي للكتلة m
		$E_0 = (m(Pu) - m(U) - m(He))C^2$ الطاقة المحررة من تفكك نواة واحدة:
	0,25	$E_0 = 4.87 MeV = 7.8 \times 10^{-13} J$
	0,25	$E_T = N_0 \cdot E_0 = \frac{m \cdot N_A}{M} \cdot E_0 = \frac{1,2 \times 10^3 \times 6,023 \times 10^{23}}{238} \times 7,8 \times 10^{-13} = 2,37 \times 10^{12} J$ لدينا:
01		ب- تحديد مدة اشتغال البطارية:
	0,25	$r=rac{P_e}{P_T}=0,6$ \Rightarrow $P_T=rac{P_e}{r}=rac{888}{0,6}=1480W$ من عبارة الاستطاعة
		$egin{align} P_T = rac{E_T}{\Delta t} \Rightarrow \Delta t = rac{E_T}{P_T} \ \Delta t = rac{2,37 imes10^{12}}{1480} = 1,6 imes10^9 \ s = 50,7 \ ans \ \end{pmatrix}$ من عبارة المردود
	0,25	$\Delta t = \frac{2,37 \times 10}{1480} = 1,6 \times 10^9 \text{ s} = 50,7 \text{ ans}$

العلامة		(t \$11 a · · ti) T + b11 + 1·a			
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)			
	0.25	التمرين التجريبي: (06 نقاط)			
	0,25	$CH_3CO_2H(\ell) + H_2O(\ell) = CH_3CO_2^-(aq) + H_3O^+(aq)$: أ– معادلة التفاعل (1 (I			
0,75	0,25	ب- التفاعل السابق تم بين: حمض ثنائية وأساس ثنائية أخرى.			
	0.25	c التركيز المولي c للمحلول (c):			
	0,25	$c=rac{n_0}{V}=rac{m}{M\cdot V}=10^{-2}mo\ell\cdot L^{-1}$ بالتعریف:			
		2) أ- جدول تقدم التفاعل:			
		م. التفاعل $CH_3CO_2H(aq) + H_2O(\ell) = CH_3CO_2^-(aq) + H_3O^+(aq)$			
		$x (mo\ell)$ التقدم $x (mo\ell)$ الحالة			
	0,25	الابتدائية 0 n_0 0			
		بوفرة x n_0-x x الانتقالية			
		النهائية x_f $n_0 - x_f$ x_f x_f			
1.25	0,25	$:\lambda_{CH_3CO_2^-}$ بدلالة σ و $\lambda_{H_3O^+}$ و $\lambda_{H_3O^+}$ بدلالة σ و $\lambda_{H_3O^+}$ و $\lambda_{H_3O^+}$			
1,25	0,23	$\sigma = \sum \lambda_{X_i} \cdot \begin{bmatrix} X_i \end{bmatrix} = \lambda_{H_3O^+} \cdot \begin{bmatrix} H_3O^+ \end{bmatrix}_f + \lambda_{CH_3CO_2^-} \cdot \begin{bmatrix} CH_3CO_2^- \end{bmatrix}_f$: تعریف			
	0,25	$\left[H_{3}O^{+} ight]_{f} = rac{\sigma}{\lambda_{H_{3}O^{+}} + \lambda_{CH_{3}CO_{2}^{-}}}$ بين الجدول: $\frac{x_{f}}{V} = \left[H_{3}O^{+} ight]_{f} = \left[CH_{3}CO_{2}^{-} ight]_{f}$ و منه:			
	0.05	(S) للمحلول الحمضي (PH) :			
	0,25	$pH = -Log\left[H_3O^+\right] = -Log\left(rac{\sigma}{\lambda_{HO^+} + \lambda_{CHCO^-}} ight)$ بالتعریف:			
	0,25	$pH = -Log\left(\frac{1,64 \times 10^{-2}}{(35,0+4,1) \times 10^{-3} \times 10^{3}}\right) = 3,4$ e air			
		$(35,0+4,1)\times10^{-3}\times10^{3})^{-3,4}$			
		(3) أ- عبارة كسر التفاعل النهائي $Q_{r,f}$ للتفاعل الحادث في المحلول $Q_{r,f}$:			
	0,25	$Q_{r,f} = rac{\left[H_3O^+\right]_f \cdot \left[CH_3CO_2^-\right]_f}{\left[CH_3CO_2H\right]_c}$ بالتعریف:			
		$Q_{r,f} = rac{10^{-2pH}}{C - 10^{-pH}}$: اثنات أن $Q_{r,f} = rac{10^{-2pH}}{C - 10^{-pH}}$			
1.05	0,25	$C - 10^{-pH}$ $C -$			
1,25	0,25	$Q_{r,f}=rac{\left[H_{3}O^{+} ight]_{f}^{2}}{C-\left[H_{3}O^{+} ight]_{c}^{2}}=rac{10^{-2pH}}{C-10^{-pH}}$ و منه:			
	0,25	$K=Q_{r,f}=rac{10^{-2pH}}{C-10^{-pH}}$:ب- ثابت التوازن K للتفاعل: بالتعريف			
	0,25	. $(K < 10^4)$ و منه: $K = \frac{10^{-2 \times 3,4}}{10^{-2} - 10^{-3,4}} = 1,65 \times 10^{-5}$ و منه: $K = \frac{10^{-2 \times 3,4}}{10^{-2} - 10^{-3,4}} = 1,65 \times 10^{-5}$			

امة	العلا	/+5		NI II.		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)				
	0,25					(II)
0,5	0,25				ادث في المزيج: تحول	*
			ي ، بطيء .	كوس) ، لا حرارة	: غير تام (محدود أو ع	خصائصه
0,25	0,25				عل المنمذج للتحول الح	2) معادلة التفا
	0,23	$CH_3CO_2H(\ell)+C_3I$	$CH_{3}CO_{2}H(\ell) + C_{3}H_{7}OH(\ell) = CH_{3}CO_{2}C_{3}H_{7}(\ell) + H_{2}O(\ell)$			
				·	المولي للمزيج في حالاً	
	0,25	النوع الكيميائي	_		$CH_3CO_2C_3H_7$	
	,	$n(mo\ell)$ (ح. التوازن ممية المادة (ح				0,12
01	0,25		$r = \frac{r}{r}$	$\frac{n_f (CH_3CO_2C)}{n_0 (CH_3CO_2)}$	$\frac{{}_{3}H_{7}}{H} \times 100 = 60\%$	ب- المردود:
	0,25		. <i>CH</i> ₃ – <i>CHOI</i>	- هی H −CH ₃	C_3H_7 – OH کحول	و منه صيغة ا
	0,25	إيثانوات 1 ميثيل الإيثيل. CH_3	CO ₂ CH (CH ₃	اناتج واسمه: ₂	صف المنشورة للمركب ا	ج- الصيغة نو
					ور الجملة:	4) أ– جهة تط
		$\lceil CH_3CO \rceil$	$CH(CH_3)$	$\cdot [H_{2}O]$,
	0.25	$Q_{r,i} = \frac{\Box}{[CH_2CO_2]}$	$\frac{1}{H \cdot (CH_2)}$	$\frac{1}{CHOH}$:	0,1md من الماء يصبح	$ ho\ell$ بعد إضافة
	0,25	L 3 2	Ji L\ 3/2	$\exists i$	0.10	
					$Q_{r,i} = \frac{0.12 \times 0.2}{0.08 \times 0.0}$	$\frac{-}{08} = 4{,}125$
	0,25		غير المباشر.	ر باتجاه التفاعل	منه: حالة الجملة تتطو	و $Q_{r,i} > K$
				مض والكحول).	تتطور بجهة تشكل الح	(تقبل الإجابة:
	0,25	$K = 2.25 = \frac{0}{2}$	$0.12-x_f$)×(0	$(0,22-x_f)$:	مولي عند التوازن الجديد	_ ب التركيب ال
01		$1,25x_f^2-0,7x_f$	-0,012 = 0	$\Rightarrow x_f = 0,$	$0168mo\ell\approx 0,017$	$mo\ell$ و منه:
01						إذن:
	0.25	النوع الكيميائي	CH_3CO_2H	C_3H_7OH	$CH_3CO_2C_3H_7$	H_2O
	0,25	$n(mo\ell)$ (مية المادة (ح. التوازن الجديد)	5 0,097	0,097	0,103	0,203
					-1	

العلامة		/ *!**! ~ * *!\ ~ 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		الجزء الأول (14 نقطة):
	0.25	التمرين الأول (04 نقاط):
0,75	0,25	α : المعددين a -β: الكترون. الب- ايجاد العددين a و b :
	0,25	
	0,25	$\left\{ egin{aligned} \sum A_i &= \sum A_f \ \sum Z_i &= \sum Z_f \end{aligned} ight. ig$
	0.25	2- أثبات العلاقة :.
	0,25	$N_{Pb}(t) = N_{U}'(t) = N_{U}(0) - N_{U}(0) \cdot e^{-\lambda t} = N_{U}(0)(1 - e^{-\lambda t})$
0,75	0,25	$\frac{m_{Pb}\left(t\right)\cdot N_{A}}{M_{Pb}} = \frac{m_{U}\left(0\right)\cdot N_{A}}{M_{U}}\left(1 - e^{-\lambda t}\right)$
	0,25	$m_{Pb}(t) = \frac{M_{Pb}}{M_U} m_U(0) (1 - e^{-\lambda t}) = 0,866 \cdot m_U(0) (1 - e^{-\lambda t})$
		$m_{f}\left(Pb ight)=9.7g$ في العينة : من البيان نجد $N_{U}\left(0 ight)=0.7g$
	0,25	$N_0(U) = N_f(Pb) = \frac{m_f(Pb) \cdot N_A}{M_{Pb}} = \frac{9.7 \times 6.02 \times 10^{23}}{206} = 2.83 \times 10^{22} Noy$ ومنه
	0,25	
	0.25	$(N_{c}(0))$ ب- زمن نصف العمر : لدينا $N_{c}(Pb)$ $(N_{c}(Pb))$
	0,25	$N_{U}\left(t_{\frac{1}{2}}\right) = \frac{N_{U}\left(0\right)}{2} \Rightarrow N_{Pb}\left(t_{\frac{1}{2}}\right) = \frac{N_{f}\left(Pb\right)}{2} \Rightarrow m_{Pb}\left(t_{\frac{1}{2}}\right) = \frac{m_{f}\left(Pb\right)}{2} = 4,85g$
	0,25	$t_{\frac{1}{2}}(U) = 4.5 \times 10^9 ans$ بالاسقاط نجد:
2,25		$N_{\nu}(0)$ ج- عمر العينة الصخرية : $N_{\nu}(0)$
	0,25	$m_{Pb}(t) = 0.103 m_U(0) = 0.103 \frac{N_U(0) \cdot M_U}{N_A} = \frac{0.31 \times 2.83 \times 10^{22} \times 238}{6.02 \times 10^{23}} = 3.5g$
	0,25	$t = 3 \times 10^9 ans$: بالأسقاط نجد
	0,25	$m_{p_b}\left(t ight)$ = $m_f\left({}_{p_b} ight)\!\left(1-e^{-\lambda t} ight)$ \Rightarrow $t=rac{-t_{1/2}}{Ln2}\cdot Lnigg(1-rac{m_{p_b}\left(t ight)}{m_f\left({}_{p_b} ight)}igg)$: تحقق حسابیا من النتیجة
	0,25	$\Rightarrow t = \frac{-4.5 \times 10^9}{Ln2} \cdot Ln \left(1 - \frac{3.5}{9.7} \right) = 3 \times 10^9 ans$
		الم تقديد تا در الدر اندر 238 ₇₇ في القشرية الأمين قبالاً المهذان
		4- تفسير تواجد اليورانيوم U^{238}_{92} في القشرة الأرضية الى يومنا هدا: $t=3 imes 10^9$
0,25	0,25	وبالتالي انوية اليورانيوم 238 لم تتفكك كليا بعد $rac{t}{t_{1/2}} = rac{3 imes 10^9}{4.5 imes 10^9} = 0,66 \Rightarrow t = 0,66 \cdot t_{1/2} < 7,2 t_{1/2}$
, <u>20</u>		فهو لا يزال موجود في القشرة الأرضية .
	1	

العلامة		/ etable - e bit 7 4 bbt - 4 e
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0,5	0,25	التمرين الثاني (04 نقاط): u_c التمرين الثاني تحدث في المكثفة هي ظاهرة الشحن . u_c اتجاه التيار المار في الدارة ، واتجاه التوترين u_C و u_R المرا المار في الدارة ، واتجاه التوترين u_R المرا المار في المار في المرا المار في الدارة ، واتجاه التوترين والمرا المار في المرا المار في الدارة ، واتجاه التوترين والمرا المار في الدارة ، واتجاه التوترين واتجاه التوترين واتجاه التوترين والمرا المار في المرا الم
	0,25	$u_{C}\left(t ight)$ يحققها التي يحققها $u_{C}\left(t ight)$ يحققها التوتر بين لبوسي المكثفة $u_{C}+u_{R}=E$ $u_{C}+u_{R}=E$ $u_{C}+RC\frac{du_{C}}{dt}=E$ $\frac{du_{C}}{dt}+\frac{1}{RC}u_{C}=\frac{E}{RC}$ \vdots ي بالتعويض في المعادلة التفاضلية نجد $u_{C}\left(t ight)=A+Be^{-lphat}$
1,25	0,25	$Be^{-\alpha t}\left(-\alpha + \frac{1}{RC}\right) + \left(\frac{A}{RC} - \frac{E}{RC}\right) = 0$ $\begin{cases} \left(-\alpha + \frac{1}{RC}\right) = 0 \Rightarrow \alpha = \frac{1}{RC} \\ \frac{A}{RC} - \frac{E}{RC} = 0 \Rightarrow A = E \end{cases}$ من الشروط الابتدائية : عند t=0 يكون t=0
	0,25	$B=-A$ ومنه $u_{C}\left(0\right)=A+B=0$
	0,25	$u_{C}\left(t\right)=E\left(1-e^{-\frac{1}{RC}t}\right) \qquad : a = 0$ $= -\frac{1}{RC} = 0$ $\alpha = \frac{1}{RC} = 0$ $\alpha = $

العلامة		/ state a settle to the teacher			
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)			
	0,25	: τ الزمن τ : الزمن $E_C(\tau) = \frac{1}{2}CE^2(1-e^{-\frac{\tau}{\tau}})^2 = E_{cmax} \times (0.63)^2 = 7.9 \times 10^{-4} J$: عند			
1.25	0,25	من البيان (4) نجد: $\tau = 0.5 s$ ب- إيجاد القوة المحركة الكهربائية للمولد:			
1.20	0,25	$u_R(0) = u_{R \max} = E = 9V$ عند اللحظة $t = 0$ يكون			
	0,25	$E_{C ext{max}}=rac{1}{2}CE^2$ \Rightarrow $C=rac{2E_{C ext{max}}}{E^2}=49,4\mu F$: ايجاد سعة المكثفة			
	0,25	$R = \frac{\tau}{C} = \frac{0.5}{49.4 \times 10^{-6}} = 10.1 \times 10^{3} \Omega$: $R = \frac{\tau}{C} = \frac{0.5}{49.4 \times 10^{-6}} = 10.1 \times 10^{3} \Omega$			
		$u_{\scriptscriptstyle C}(t)$ المعادلة التفاضلية لتطور التوتر $u_{\scriptscriptstyle C}(t)$			
		$u_C(t)+u_L(t)=0:(LC)$ بتطبيق قانون تجميع التوترات في الدارة المهتزة $u_C(t)$			
		$u_L(t) = L \cdot \frac{di(t)}{dt} = L \cdot \frac{d^2q(t)}{dt^2} = LC \cdot \frac{d^2u_C(t)}{dt^2}$ (2)			
	0,25	$rac{d^{2}u_{C}(t)}{dt^{2}} + rac{1}{LC} \cdot u_{C}(t) = 0$ و منه: $u_{C}(t) + LC \cdot rac{d^{2}u_{C}(t)}{dt^{2}} = 0$			
01		ب) تبیان حل المعادلة التفاضلیة: $\frac{d^2u_C(t)}{dt^2} = -A \cdot (\frac{1}{\sqrt{LC}})^2 \cdot \cos \frac{1}{\sqrt{LC}}t \text{e a.i.} u_C(t) = A \cdot \cos \frac{1}{\sqrt{LC}}t$ حل م. ت. السابقة t			
	0,25	ومنه نجد: $u_C(t)=-rac{d^2u_C(t)}{dt^2}=-rac{1}{LC}\cdot u_C(t)$ ومنه نجد: $u_C(t)=-rac{d^2u_C(t)}{dt^2}=-rac{1}{LC}$ وهو المطلوب. $T_0=2\pi\sqrt{LC}$ عبارة الدور الذاتي: $T_0=rac{2\pi}{\omega_0}$ حيث $m_0^2=rac{1}{LC}$ ومنه			
		$u_{C}(0) = A = E$ $t=0$ S عبارة $t=0$ S عبارة			
	0,25	$T_0=4 imes0.5=2s$. قيمة الدور الذاتي:			
	0,25	$L=rac{T_0^2}{4\pi^2C}=rac{(\ 2 imes 10^{-3}\)^2}{4 imes \pi^2 imes 50 imes 10^{-6}}=2 imes 10^{-3}H=2mH$ قيمة ذاتية الوشيعة:			
		التمرين الثالث(06 نقاط):			
		-I جدول تقدم التفاعل : التفاعل : التفاعل التفاعل : التفاعل : التفاعل : التفاعل : التفاعل : التفاعل : التفاعل ا			
	0,5	$\mathrm{CO(NH_2)_2(aq)} = \mathrm{NH_4^+(aq)} + \mathrm{CNO^-}(aq)$ ميات المادة (mol) التقدم			
0,75	0,5	العدم (MOI) العدم $n_0 = CV$ 0 0 0			
		x $n_0 - x$ x x			
		ت مائیة x_{max} x_{max} x_{max} x_{max} x_{max}			
	0,25	$x_{max}=n_0=CV=2 imes10^{-3}\ mol\ /\ L$ تحديد التقدم الأعظمي \mathbf{X}_{max} : لدينا			

العلامة		مناه بالأحل أن الأصنات الثالث)
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		: σ عبارة تركيز $^+$ NH4 بدلاله -2
0,5	0,25	$\sigma = \lambda_{NH_4^+} \cdot \left[NH_4^+ \right] + \lambda_{CNO^-} \cdot \left[CNO^- \right] = \left[NH_4^+ \right] \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right)$
0,3	0,25	$\Rightarrow \left[NH_4^+\right] = \frac{\sigma}{\lambda_{NH_4^+} + \lambda_{CNO^-}}$
0,25	0,25	$\left[NH_4^+\right] = rac{x}{V}$ العلاقة بين $\left[NH_4^+\right]$ و x و v : لدينا -3
	0,25	$\sigma = \left[NH_4^+\right] \left(\lambda_{NH_4^+} + \lambda_{CNO^-}\right) \Rightarrow \sigma = \frac{x}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-}\right) : X$ العلاقة σ و X
0,75	0,25 0,25	$\sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) = \frac{2 \times 10^{-3} \times \left(9,69 + 11,02 \right) \times 10^{-3}}{0.1 \times 10^{-3}} = 0,41 S.m^{-1}$: σ_{max} قيمة عيمة $\sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} \right) = \frac{2 \times 10^{-3} \times \left(9,69 + 11,02 \right) \times 10^{-3}}{0.1 \times 10^{-3}} = 0,41 S.m^{-1}$:
		5- إثبات العلاقة:
0,5	0,25	$\begin{cases} \sigma(t) = \frac{x(t)}{V} \left(\lambda_{NH_{4}^{+}} + \lambda_{CNO^{-}} \right) \\ \sigma_{max} = \frac{x_{max}}{V} \left(\lambda_{NH_{4}^{+}} + \lambda_{CNO^{-}} \right) \end{cases} \Rightarrow \frac{\sigma(t)}{\sigma_{max}} = \frac{x(t)}{x_{max}} \Rightarrow x(t) = x_{max} \frac{\sigma(t)}{\sigma_{max}}$
	0,25	$\sigma_{max} = rac{x_{max}}{V} \left(\lambda_{NH_4^+} + \lambda_{CNO^-} ight) \qquad \sigma_{max} \qquad \sigma_{max} \qquad \sigma_{max}$
	0,25	6-أ- تعريف السرعة الحجمية للتفاعل: هي مشتق تقدم التفاعل في وحدة الحجوم.
		$V_{\text{vol}}(t) = \frac{1}{V} \cdot \frac{dx}{dt}$:
1,25	0,25	-السرعة تتناقص مع مرور الزمن لان ميل المماس للمنحنى يتناقص مع مرور الزمن .
	0,25	ب-تعريف $t_{1/2}$: هو الزمن اللازم لبلوغ التفاعل نصف تقدمه الاعظمي.
	0,25 0,25	$x(t_{\frac{1}{2}}) = \frac{x_{max}}{2} = 10^{-3} \ mol \Rightarrow t_{\frac{1}{2}} = 70 \ min$ تحدیده بیانیا
0,25	0,25	$\left[NH_4^+\right]_f = \frac{x_{max}}{V} = 2 \times 10^{-2} \ mol \ / \ L : \left[NH_4^+\right]_f -7$
		۱۱– 1-البرتوكول التجريبي:
		المزيج بواسطة ماصة عيارية حجما $V=10m$.
	0,75	- نضيف للبيشر قطرات من كاشف ملون مناسب.
0,75		- نقوم بإضافة الصودا من السحاحة الى غاية تغير اللون.
		- نسجل حجم التكافؤ.
		الرسم:
0,75	0,75	نضيف للبيشر قطرات من كاشف ملون مناسب. نقوم بإضافة الصودا من السحاحة الى غاية تغير اللون. نسجل حجم التكافؤ.

العلامة		/ AN T
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0,25	0,25	$NH_4^+(aq) + OH^-(aq) = NH_3(aq) + H_2O(1)$: معادلة التفاعل
0,5	0,25 0,25	: عند التكافؤ يكون $C' = \left[NH_4^+ \right]$ عند التكافؤ يكون $\left[NH_4^+ \right]$ عند التكافؤ يكون $C'V = C_b V_{be} \Rightarrow C' = rac{C_b V_{be}}{V} = rac{20 imes 10^{-2}}{10} = 2 imes 10^{-2} mol.L^{-1}$
0,25	0,25	4- المقارنة : القيمة نفسها.
1,25	0,25	x' x'
	0,5 0,5	$\sum \overrightarrow{F}_{ext} = m.\overrightarrow{a} \Rightarrow \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = m.\overrightarrow{a}$ $= -\frac{f}{m} + g \sin \alpha \dots (1)$ بالإسقاط على محور الحركة:
0,5	0,5	$a(m/s^2)$ $f(N)$
01	0,25 0,25 0,25 0,25	: $m \cdot \alpha \cdot \alpha \cdot \alpha \cdot \alpha$ البيان عبارة عن خط مستقيم مائل M لايمر من المبدأ معادلته من الشكل : $a = k.f + b(2)$ بمطابقة M (2) نجد M
0,5	0,5	$\underbrace{w(\overrightarrow{P})}_{W(\overrightarrow{f})} = \underbrace{w(\overrightarrow{f})}_{W(\overrightarrow{f})}$

الإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية /الشعبة: تقني رياضي/بكالوريا: 2017

العلامة		/ *****
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		5- تطبيق مبدأ انحفاظ الطاقة على الجملة (جسم (s)) أ أ- عبارة قوة الاحتكاك:
1,25	0,25 0,25 0,25	$E_{CA} + w(\overrightarrow{P}) - \left W(\overrightarrow{f}) \right = E_{CB} \Rightarrow m.g.AB.\sin \alpha - f.AB = \frac{1}{2}mv_B^2$ $f = m(g\sin \alpha - \frac{v_B^2}{2AB}) = 1,25N$
	0,25 0,25	$v_B^2 - v_A^2 = 2aAB \Rightarrow a = rac{v_B^2}{2.AB} = 2,4m/s^2$: لدينا $f = 1,25N$: من البيان وبالإسقاط نجد
0,5	0,25 0,25	II -اعتمادا على البيانين : II - طبيعة الحركة : II - طبيعة الحركة : عبارة عن خط مستقيم أفقي، الحركة مستقيمة منتظمة على المحور $v_x(t)$: البيان $v_x(t)$ عبارة عن خط مستقيم مائل لا يمر من المبدأ ، الحركة مستقيمة على المحور $v_y(t)$: البيان $v_y(t)$ عبارة عن خط مستقيم مائل الا يمر من المبدأ ، الحركة مستقيمة متغيرة بانتظام .
0,5	0,25 0,25	x_D والمدى x_D : $h = \frac{1}{2}.(1,1+6).0,5 = 1,78m : -2-$ من البيان $x_D = 1,78m : -2$ من البيان $x_D = 1,9.0,5 = 0,95m : -3-$ من البيان $x_D = 1,9.0,5 = 0,95m : -3-$
0,5	0,25 0,25	$v_D = \sqrt{v_{Dx}^2 + v_{Dy}^2} = \sqrt{1,9^2 + 6^2} = 6,29m/s$: v_D