Module: Informatique 1

Les structures de contrôle Les conditions

1. Introduction

Nous avons vu jusqu'à présent des algorithmes avec des instructions qui s'enchaînent de façon séquentielles, c'est-à-dire qui vont s'exécuter les unes après les autres.

Toutefois, cela n'est pas toujours satisfaisant.

Exemple:

On veut écrire un algorithme permettant de lire la moyenne d'un étudiant et d'afficher la mention « Admis » si la moyenne est supérieure ou égale à 10 et la mention « Ajournée » dans le cas contraire.

Pour afficher l'une des mentions, il faut tester la valeur de la note introduite.

Pour effectuer ce test, on utilise la structure alternative.

2. La structure alternative

Reprenant l'exemple précédent. On peut exprimer la problématique de la façon suivante :

Si la note est supérieure ou égale à 10 alors afficher « Admis » sinon afficher « Ajourné ».

Dans un algorithme, on utilise la structure alternative dont la syntaxe est :

```
Si condition alors
Instruction1
Sinon
Instruction2;
Finsi
```

```
Si condition alors
Instruction1;
Instruction 3;
Sinon
Instruction2;
Instruction 4;
Finsi
```

Le traitement teste la condition :

- Si elle est vraie, il exécute « instruction1 ».
- Si elle est fausse, il exécute « instruction2 ».

Dans le deuxième cas, les instructions « instruction1 » et « instruction3 » sont exécutées si la condition est vraie. Dans le cas contraire se sont les instructions « instruction2 » et « instruction4 » qui sont exécutées.

En pascal, la syntaxe de la structure alternative est donnée comme suit :

```
If condition then
Instruction1
Else
Instruction 2;
```

```
if condition then
  begin
  Instruction1;
  Instruction 2;
  end
  else
  begin
  Instruction3;
  Instruction 4;
  end
```

Module: Informatique 1

Remarque:

En pascal le mot clé « else » ne doit pas être précédé par le « ; »

Ainsi, l'algorithme de notre exemple se présente comme suit :

```
Algorithme mention;
Variable
Moyenne: réel;
Début
Ecrire ('donner la moyenne de l''étudiant');
Lire (moyenne);
Si (moyenne>=10) alors
Ecrire ('Admis')
Sinon
Ecrire ('Ajourné');
Finsi
Fin.
```

Exercice:

Ecrire un algorithme qui lit un nombre entier et détermine si ce nombre est multiple de 3.

```
Algorithme multiple;
Variable
nb: entier;
Début
Ecrire ('donner un nombre entier');
Lire (nb);
Si (nb mod 3 =0) alors
Ecrire (nb, 'est multiple de 3')
Sinon
Ecrire (nb, 'n''est pas multiple de 3');
Finsi
Fin.
```

Remarque:

La fonction « mod » permet de retourner le reste de la division entière. Ainsi, nb mod 3 exprime le reste de la division entière de nb par 3.

3. La structure conditionnelle

Parfois, il faut exécuter une instruction uniquement si une condition est vraie et ne rien faire si la condition est fausse.

Module: Informatique 1

Exemple:

Ecrire un algorithme qui affiche la valeur absolue d'un nombre entier.

```
Algorithme valeur_absolue

Variable

Nb, abs :entier;

Début

Ecrire ('donner un nombre entier ');

Lire (nb);

Abs ← nb;

Si nb<0 alors

Abs ←-nb;

Finsi

Ecrire ('la valeur absolue du nombre est :', abs);

Fin.
```

Dans cet algorithme, on suppose que le nombre est positif et on ne calcule sa valeur absolue que s'il est négatif. Il n'ya aucun traitement à faire si la condition (nb<0) est fausse.

4. Les structures alternatives imbriquées

Lorsque le nombre de cas possibles dans une structure alternative dépasse deux cas, il est nécessaire d'utiliser les structures alternatives imbriquées.

Exemple

Ecrire un algorithme qui lit la moyenne d'un étudiant est affiche l'un des messages suivants :

'Bon' si la moyenne est supérieure à 13.

'Moyen' si la moyenne est comprise entre 10 et 13.

'Faible' si la moyenne est inférieure à 10.

Dans cet exemple, le nombre de cas possible est 3. Une structure alternative simple ne permet pas de résoudre le problème. On utilise alors la structure des alternatives imbriquées.

```
Algorithme mention;
Variable
Moyenne: réel;
Début
Ecrire ('donner la moyenne de l''étudiant');
Lire (moyenne);
Si (moyenne > 13) alors
  Ecrire ('Bon')
        Sinon
           Si (movenne > =10) alors
           Ecrire ('Moyen')
           Sinon
           Ecrire ('Faible');
          Finsi
Finsi
Fin.
```