Examen de : Communications Numériques 2 (UEF 35)

Exercice 1 (5 pts):

On utilise un canal binaire symétrique avec un codage répétitif dont les symboles binaires 0 et 1 sont répétés n fois, avec n=2m+1 où m est un entier. Le décodage se fait en appliquant un critère majoritaire : si 1' on a reçu dans un bloc de n bits plus de 0 que de 1, le décodeur opte pour la réception d'un 0. Dans le cas contraire, il décide qu'il a reçu un 1. Une erreur se produit donc lorsque m+1 ou plus parmi les 2m+1 bits sont incorrectement reçus.

1. Calculer la probabilité d'erreur P_e .

Exercice 2 (4 pts):

Montrer que $F_2 = \{0, 1\}$ muni de l'addition modulo 2 est une structure de groupe fini.

Exercice 3 (5 pts):

Montrer que l'ensemble $G = \{1, 2, ..., p-1\}$ muni de l'opération de multiplication modulo p est une structure de groupe fini si p est un nombre premier. En s'aidant du résultat de l'<u>Exercice 1</u>, que pouvez-vous déduire à propos de F_2 ?

Exercice 4 (6 pts):

On considère l'application $(F_q)^k \to (F_q)^{q+1}$ suivante : Soit $(f_0, f_1, ..., f_{k-1})$ un k – uplet sur F_q , et définissons un polynôme $f(z) = f_0 + f_1 z + \cdots + f_{k-1} z^{k-1}$ de degré k-1. On associe au k – uplet $(f_0, f_1, ..., f_{k-1})$ le (q+1) – uplet $(f_0, f_1, ..., f_{k-1})$ correspondant au mot de code RS plus la composante additionnelle f_{k-1} .

- 1. Montrer que les q^k (q+1) uplets forment un code linéaire optimal $(n=q+1,\ k,\ d=n-k+1)$ sur F_q .
- 2. Construire un code (4, 2, 3) linéaire sur F_3 .