Examen Final en Communications Numériques 1 (CN1)

Première année Master Télécom Dimanche 25 Mai 2014 à 13H00 Salle G4

Durée de l'épreuve: 0	1H30
-----------------------	------

Calculatrices scientifiques autorisées

Responsable de module: Mr. Abed M 2013-2014

Partie 1 : Questions de cours	<u>S</u>			(6 pts)
1. Le codage de source :				(1 pt)
a) Contient une compression :	Vrai faux	pas toujours vrai		
b) Optimise la longueur des paq	uets à transmettre a	près codage de can	al: Vrai	faux
pas toujours vrai				•
c) Minimise la complexité du mess	sage de la source analo	gique : Vrai		ours vrai
d) Permet de réduire la complexité	et le coût de transmiss	ion: Vrai	faux pas touj	ours vrai
2. Les pertes d'informations suite	au codage de source	sont dues principal	ement à :	(0.5 pt)
L'échantillonnage I	_a quantification	La fiabilité du ca	npteur utilisé	
3. Compléter le tableau ci-dessous 16 bits, 8 KHz, 44.1 KHz, 8 bits	s par les valeurs suiv	antes avec justificat	ion:	<u>(1 pt)</u>
Qualité du service	Bande	Echantillonnage	Quantification	
HiFi	[20 Hz, 20 KHz]			
Téléphone grand public	[300 Hz, 3400 Hz]			
4. Le débit d'un canal de comm sont :	2)			(0.5 pt)
5. Quelle est la limite de détection		n code de Hamming	non-systématiqu	e <u>(0.5 pt)</u>
6. Un signal numérique est défini Donner l'expression mathématique	$\operatorname{de} x(n)$.			<u>(1 pt)</u>
7. Quel est le rôle du filtre de mise	e en forme?			(0.5 pt)
8. Pourquoi considérons-nous en	pratique que le bruit	_		?(0.5 pt)
9. Quand est-ce nous disons qu'un		······································		(0.5 pt)
	• • • • • • • • • • • • • • • • • • • •			

1/3

Département de Génie Electrique

Partie 2: Exercices divers

(14 pts)

Exercice 1 : Code de Hamming systématique (7,4)

(4 pts)

Lors d'un transfert de données, vous recevez les messages suivants codés grâce au code Hamming(7,4) (version systématique).

a. Une erreur unique a été insérée dans chaque message reçu. Corrigez les quatre messages suivants en utilisant la méthode de syndrome.

0100111 0001010 0100100

- b. Décoder le message suivant : 010011000010110010101
- c. Discuter la détection et la correction des erreurs de ce code.

On donne:

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Exercice 2 : Code linéaire en bloc et correction

(5 pts)

Soit le code linéaire systématique défini par la matrice génératrice :

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

- a. Déterminer n et k.
- b. Donner tous les mots de code valides. En déduire la distance minimale du code.
- c. Coder le message suivant : 10011101.
- d. Vérifier si les messages suivants sont corrects: 1111100, 0111000, 1110101 et 1111101.
- e. Corriger les messages 0100101 et 1100001
- f. Décoder le message 1111100.

Discuter la détection et la correction des erreurs

Exercice 3 : Code de Hamming non-systématique (7,4)

(2.5 pts)

- a. On souhaite envoyer le message 1010. Ecrire le mot de Hamming non-systématique correspondant.
- b. Y a-t-il une erreur dans le mot de Hamming suivant : 1010110 Discuter la correction de l'erreur si elle existe.
- c. Donner une matrice génératrice G de ce code.

Exercice 4 : Code par répétition (7,4)

(2.5 pts)

On considère un code correcteur d'erreur C(n,k) pour lequel k=2 et n est un entier pair tel que n 6, et dont les mots de codes « v » sont obtenus à partir des mots d'informations u=(u1, u2) en les répétant (n/2-1) fois. En d'autres termes, le mot de code obtenu à partir de u=(u1, u2) où (u1, u2) appartient à $\{0,1\}^2$ s'écrit :

$$v = (u1, u2, u1, u2, ..., u1, u2)$$
 (*)

Par exemple, si n = 8, le mot-code obtenu à partir de (1, 0) est (1, 0, 1, 0, 1, 0, 1, 0).

- a. Donnez une matrice génératrice G de ce code C(n,2) (où, pour rappel, n est un entier pair supérieur ou égal à 6).
- b. Donnez une matrice de contrôle H de ce code C(n,2).
- c. Quel est le nombre maximal q de bits erronés que ce code garantit de pouvoir toujours détecter ?
- d. Quel est le nombre maximal de bits erronés que ce code peut corriger ?

Rappels : Matrice génératrice et matrice de contrôle d'un code linéaire systématique C(n, k)

k: nombre de bits du message sans codage (longueur du message après codage de source) n: nombre de bits du message après codage de canal (longueur du mot de code) r=n-k: nombre de bits de contrôle (ou de redondance)

$$G=(I_k \mid P), [I_k]=k \times k, [P]=k \times r; r=n-k$$

$$H=G^T=(P^T \mid I_r), [P^T]=r \times k, [I_r]=r \times r; r=n-k$$

$$H^T=\begin{pmatrix} P \\ -- \\ I_r \end{pmatrix}, [P]=k \times r, [I_r]=r \times r; r=n-k$$

QUE DIEU VOUS AIDE