CHAPITRE 2

SÉRIES ENTIÈRES

2.1 Séries entières

Définition 2.1.1 On appelle série entière toute série de fonctions $(\sum f_n)$ dont le terme général est de la forme $f_n(x) = a_n x^n$, où $(a_n)_n$ désigne une suite réelle ou complexe et $x \in \mathbb{R}$.

Une série entière est notée $(\sum a_n x^n)$. Comme pour les séries de fonctions, on cherche l'ensemble;

$$\Delta = \left\{ x \in \mathbb{R} : \sum_{n=0}^{\infty} a_n x^n \text{ converge} \right\}.$$

C'est le domaine de convergence de la série entière.

Exemple 1.

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Posons $f_n(x) = \frac{x^n}{n!}$ et appliquons le critère de D'Alembert;

 $\lim_{n \to \infty} \left| \frac{f_{n+1}(x)}{f_n(x)} \right| = \lim_{n \to \infty} \left| \frac{x}{n+1} \right| = 0.$ La série entière est absolument convergente pour tout $x \in \mathbb{R}$; donc $\Delta = \mathbb{R}$.

Exemple 2.

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}.$$

Posons
$$f_n(x) = \frac{x^n}{n^2}$$
 on a : $\lim_{n \to \infty} \left| \frac{f_{n+1}(x)}{f_n(x)} \right| = \lim_{n \to \infty} \left| \left(\frac{n}{n+1} \right)^2 x \right| = |x|$.

Si |x| < 1, la série est absolument convergente et si |x| > 1 la série diverge.

Etudions le cas où |x| = 1.

on a
$$|f_n(x)| = \frac{|x|^n}{n^2} = \frac{1}{n^2}$$
. La série $\sum_{n=0}^{\infty} \frac{x^n}{n^2}$ est alors absolument convergente dans [-1, 1];

et alors $\Delta = [-1, 1]$

Exemple 3.

$$\sum_{n=0}^{\infty} n! x^n.$$

Cette série ne converge que si x=0 car $\lim_{n\to\infty}\left|\frac{f_{n+1}(x)}{f_n(x)}\right|=\lim_{n\to\infty}|(n+1)x|$ et la limite n'existe que si x = 0 : d'où : $\Delta = \{0\}$. Exemple 4.

$$\sum_{n=1}^{\infty} \frac{x^n}{n}.$$

Posons $f_n(x) = \frac{x^n}{n}$ on a $\lim_{n \to \infty} \left| \frac{f_{n+1}(x)}{f_n(x)} \right| = \lim_{n \to \infty} \left| \left(\frac{n}{n+1} \right) x \right| = |x|$. Si |x| < 1, la série est absolument convergente et si |x| > 1 la série di Etudions le cas où |x| = 1.

x = 1: c'est la série harmonique $\left(\sum_{n=1}^{\infty} \frac{1}{n}\right)$, elle est divergente.

x = -1: c'est la série harmonique alternée $\left(\sum \frac{(-1)^n}{n}\right)$, elle est convergente. D'où : $\Delta = [-1, 1[$.

Lemme 2.1.1 (Lemme d'Abel)

Soit $(\sum a_n x^n)$ une série entière. On suppose qu'il existe $x_0 \in \mathbb{R}$ tel que la suite $(a_n x_0^n)$ soit bornée. Alors :

1. La série $(\sum a_n x^n)$ est absolument convergente pour $|x| < |x_0|$.

2. La série $(\sum a_n x^n)$ est normalement convergente pour |x| < r, et pour tout r tel que $0 < r < |x_0|$.

Preuve.

La suite $(a_nx_0^n)$ est bornée, il existe M>0 tel que $\forall n\in\mathbb{N}\ |a_nx_0^n|\leq M$.

$$|a_n x^n| = \left| \frac{a_n x_0^n x^n}{x_0^n} \right| = |a_n x_0^n| \left| \frac{x}{x_0} \right|^n \le M \left| \frac{x}{x_0} \right|^n \cdot \text{La série } \sum_{n=0}^{\infty} \left| \frac{x}{x_0} \right|^n \text{ est une série géométrique}$$

de raison $\left|\frac{x}{x_0}\right| < 1$, donc convergente. D'après le théorème de comparaison, la série

$$\sum_{n=0}^{\infty} |a_n x^n| \text{ est convergente et par conséquent la série } \sum_{n=0}^{\infty} a_n x^n \text{ converge absolument pour } |x| < |x_0|.$$

2.) Soit $0 < r < |x_0|$ et soit $|x| \le r$.

$$|a_n x^n| = \left| \frac{a_n x_0^n x^n}{x_0^n} \right| = |a_n x_0^n| \left| \frac{x}{x_0} \right|^n \le M \left| \frac{r}{x_0} \right|^n \cdot \text{Comme } \sum_{n=0}^{\infty} M \left(\frac{r}{x_0} \right)^n \text{ est une série numérique}$$

convergente, la série entière $\sum_{n=0}^{\infty} a_n x^n$ est normalement convergente pour tout x tel que |x| < r et tout r tel que $0 < r < |x_0|$.

Rayon de convergence d'une série entière 2.2

Pour les séries entières, la notion de convergence prend une forme assez simple.

Théorème 2.2.1

Soit $\left(\sum a_n x^n\right)$ une série entière; alors il existe un unique nombre réel $R \ge 0$ (éventuellement infini) tel que:

1. $\left(\sum a_n x^n\right)$ converge absolument dans]-R,R[.

2. $\left(\sum a_n x^n\right)$ diverge si |x|>R.

1.
$$\left(\sum a_n x^n
ight)$$
 converge absolument dans] – R, R[.

2.
$$\left(\sum a_n x^n\right)$$
 diverge $si |x| > R$

Preuve.

Soit
$$I = \left\{ r \in \mathbb{R}^+ : \sum_{n=0}^{\infty} a_n r^n \text{converge} \right\} \subset \mathbb{R}^+. I \neq \emptyset \text{ car } 0 \in I.$$

On distinguera trois cas : $I = \{0\}$, $I = \mathbb{R}^+$ et $\{0\} \subset I \subset \mathbb{R}^+$.

1) $I = \{0\}$. On pose R = 0.

Soit $x \in \mathbb{R}^*$. Ceci implique que |x| > 0 et par suite $x \notin I$ et la série $\sum_{n=1}^{\infty} |a_n x^n|$ diverge.

Montrons que $\sum_{n=0}^{\infty} a_n x^n$ diverge. Pour cela, on raisonnera par l'absurde. Supposons que

$$\sum_{n=0}^{\infty} a_n x^n \text{ converge pour } |x| > 0.$$

Soit $x_1 \in \mathbb{C}$ tel que $0 < |x_1| < |x|$. La série $\left(\sum_{n=0}^{\infty} |a_n x_1^n|\right)$ est convergente d'après le lemme

d'Abel (2.1.1) et donc x_1 ∈ I. D'où la contradiction avec le fait que I = {0}.

2) $I = \mathbb{R}^+$. On pose $R = \infty$. On doit prouver que $(\sum a_n x^n)$ est absolument convergente pour tout $x \in \mathbb{R}$.

La série $\sum_{n=0}^{\infty} |a_n| r^n$ converge pour tout r > 0.

Soit $x \in \mathbb{R}^*$. Il existe r > 0 tel que |x| < r. Ceci implique $|a_n x^n| \le |a_n| r^n$ et d'après le théorème de comparaison la série $(\sum a_n x^n)$ converge absolument.

3) $\{0\} \subset I \subset \mathbb{R}^*, I \neq \{0\} \text{ et } I \neq \mathbb{R}^*.$

a) I est majoré. En effet, soit $r \in \mathbb{R}^* \setminus I$ et supposons que r n'est pas un majorant de I. Il existerait alors $r_1 \in I$ tel $r < r_1$. D'après la définition de I, la série $\left(\sum |a_n|r_1^n\right)$ est convergente ainsi que $\left(\sum |a_n|r^n\right)$ (car $|a_n|r^n<|a_n|r_1^n$) et donc $r\in I$ ce qui est en contradiction avec l'hypothèse $r \in \mathbb{R}^* \backslash I$. I est alors un ensemble non vide et majoré donc admet une borne supérieure $R = \sup I$. Pour conclure, on doit prouver que

 $(\sum a_n x^n)$ converge absolument pour tout x, |x| < R et diverge pour tout x, |x| > R.

b)Soit $x \in \mathbb{R}$ tel que |x| < R. Il existe $\rho \in I$ tel que $|x| < \rho < R$. Comme la série $\left(\sum |a_n|\rho^n\right)$ converge, $\left(\sum |a_n|\cdot|x^n|\right)$ converge en vertu du théorème de comparaison. $\left(\sum a_nx^n\right)$ est alors absolument convergente.

c) Soit $x \in \mathbb{R}$, |x| > R. Ceci implique que $|x| \notin I$ et donc la série $(\sum |a_n x^n|)$ diverge.

Montrons que $(\sum a_n x^n)$ diverge. Pour cela, on raisonne par l'absurde. Si $(\sum a_n x^n)$ converge, d'après le lemme d'Abel, (2.1.1) la série $(\sum a_n x_1^n)$ est absolument convergente pour tout $x_1 \in \mathbb{R}$, vérifiant $R < |x_1| < |x|$ et donc $|x_1| \in I$. On a alors nécessairement $|x_1| \le R = \sup_{x \in \mathcal{X}} I$ et ceci est en contradiction avec l'hypothèse $R < |x_1| < |x|$.

Définition 2.2.1 Le nombre $R = \sup \{r \in \mathbb{R}^+ : (\sum_{n = 1}^{\infty} |a_n| r^n) \text{ converge } \} \in \mathbb{R}^+ \cup \{+\infty\} \text{ est appelé rayon de convergence de la série } (\sum_{n = 1}^{\infty} a_n x^n).$

Remarque 2.2.1 Le rayon de convergence d'une série $(\sum a_n x^n)$ est caractérisé par :

- 1. $|x| < R \Longrightarrow \left(\sum a_n x^n\right)$ est absolument convergente.
- 2. $|x| > R \Longrightarrow (\sum a_n x^n)$ diverge.
- 3. |x| = R est le cas douteux où on ne peut rien dire sur la nature de la série.
- 4. Pour tout $r \in \mathbb{R}^+$ tel que r < R, la série $(\sum a_n x^n)$ est normalement (donc absolument) convergente pour $|x| \le r$.

Détermination du rayon de convergence

Lemme 2.2.1 (Lemme d'Hadamard)

Soit
$$\left(\sum a_n x^n\right)$$
 une série entière. Le rayon de convergence R est donné par la relation :
$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

Preuve.

a) Posons $\ell = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. En utilisant le critère de d'Alembert on a : $\lim_{n \to \infty} \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x| = \ell|x|$. Ceci implique :

$$\lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x| = \ell |x|. \text{ Ceci implique } :$$

$$\alpha$$
) $\left(\ell|x| < 1 \Longleftrightarrow |x| < \frac{1}{\ell}\right) \Longrightarrow$ la série est absolument convergente β) $\left(\ell|x| > 1 \Longleftrightarrow |x| > \frac{1}{\ell}\right) \Longrightarrow$ la série est divergente

$$\beta$$
) $\left(\ell|x| > 1 \iff |x| > \frac{1}{\ell}\right) \Longrightarrow$ la série est divergente

D'après la remarque (2.2.1), $R = \frac{1}{\ell}$

b) Posons $\ell = \lim_{n \to \infty} \sqrt[n]{|a_n|}$. En utilisant le critère de Cauchy :

 $\lim_{n\to\infty} \sqrt[n]{|a_n x^n|} = \ell |x|$ puis on adopte le même raisonnement que précédemment, on aboutit à la même conclusion; $R = \frac{1}{\ell}$.

Exemple 2.2.1

$$1. \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

On a $a_n = \frac{1}{n!}$, utilisons le critère de D'Alembert :

 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|^{n} = \lim_{n \to \infty} \left| \frac{n!}{(n+1)!} \right| = \lim_{n \to \infty} \left| \frac{1}{n+1} \right| = 0, \text{ donc le rayon de convergence est}$

$$2. \sum_{n=1}^{\infty} \frac{x^n}{n^2}.$$

On a $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n}{n+1} \right|^2 = 1$. Le rayon de convergence est R = 1. La série est absolument convergente pour tout |x| < 1 et divergente si |x| > 1.

$$3. \sum_{n=0}^{\infty} \frac{x^n}{2^n}.$$

Le critère de Cauchy donne :

 $\lim_{n\to\infty} \frac{n}{\sqrt{\frac{1}{2^n}}} = \frac{1}{2}$, le rayon de convergence est R=2. La série est absolument convergente pour tout |x| < 2 et divergente si |x| > 2

Remarque 2.2.2 Soit ϕ une application de \mathbb{N} dans \mathbb{N} , la série suivante $(\sum a_n x^{\varphi(n)})$ est une série entière. On commence par calculer directement la limite suivante;

$$\ell = \lim_{n \to \infty} \left| \frac{a_{n+1} x^{\varphi(n+1)}}{a_n x^{\varphi(n)}} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \cdot \lim_{n \to \infty} |x|^{\varphi(n+1) - \varphi(n)}$$

puis chercher le domaine de x où $\ell < 1$; R est donc $\sup \{ \ell \in \mathbb{R}^+ = \mathbb{R}^+ \cup \{\infty\} \}$, où notre série converge.

Exemple : Trouver le rayon de convergence de la série : $(\sum 3^n x^{2n+5})$. Dans notre cas $\varphi(n) = 2n + 5$,

$$\ell = \lim_{n \to \infty} \left| \frac{3^{n+1} x^{2n+7}}{3^n x^{2n+5}} \right| = 3|x|^2.$$

La série converge si $3|x|^2 < 1 \iff |x| < \frac{\sqrt{3}}{3}$ d'où le rayon de convergence est : $R = \frac{\sqrt{3}}{3}$. La série est absolument convergente pour tout $|x| < \frac{\sqrt{3}}{3}$ et divergente si $|x| > \frac{\sqrt{3}}{3}$.

2.3 **Propriétés**

Ce paragraphe étudie les propriétés de continuité, de dérivabilité et d'intégrabilité de la fonction somme des séries entières.

Continuité d'une série entière 2.3.1

Proposition 2.3.1

Soit
$$\left(\sum a_n x^n\right)$$
 une série entière de rayon de convergence R et soit $f:]-R, R[\longmapsto \mathbb{R}$ la fonction définie par $f(x) = \sum_{n=0}^{\infty} a_n x^n$, f est alors continue.

Preuve.

Soit 0 < r < R. Pour tout $n \in \mathbb{N}$, les fonctions $f_n(x) = a_n x^n$ sont continues dans [-R, R]et puisque la convergence est normale donc uniforme dans [-r, r], f est alors continue dans [-r, r] pour tout r, 0 < r < R. Elle est donc continue dans] - R, R[.

2.3.2 Dérivée d'une série entière

Une fonction $f: \mathbb{R} \longmapsto \mathbb{R}$ est dite dérivable en $x_0 \in \mathbb{R}$ si Définition 2.3.1 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ existe. On la note $f'(x_0)$.

Définition 2.3.2 Une fonction f est dite de classe C^n sur un intervalle I de \mathbb{R} , si sa dérivée d'ordre n est une fonction continue sur I. On notera alors que $f \in C^n(I)$.

Si elle est indéfiniment (ou infiniment) dérivable, on dira alors qu'elle est de classe C-infinie et on écrira que $f \in C^{\infty}(I)$.

Par contre $f \in C^0(I)$, signifie que f est seulement continue sur I.

Proposition 2.3.2

Soit
$$(\sum a_n x^n)$$
 une série entière de rayon de convergence R , et soit $f:]-R$, $R[\longmapsto \mathbb{R}$ la fonction définie par $f(x)=\sum_{n=0}^{\infty}a_nx^n$. Alors f est dérivable et on a $f'(x)=\sum_{n=1}^{\infty}na_nx^{n-1}$.

Preuve.

Soient les fonctions $S_n:]-R, R[\mapsto \mathbb{R}$ définies par $S_n(x) = \sum_{k=0}^{n} a_k x^k$. Ces fonctions possèdent les propriétés suivantes :

- i) $\lim_{x \to \infty} S_n(x) = f(x)$ pour tout $x \in]-R, R[$ et la convergence est absolue donc simple.
- ii) $\forall n \in \mathbb{N}$, S_n est dérivable et on a $S'_n(x) = \sum_{k=0}^{\infty} k a_k x^{k-1}$.
- iii) Le rayon de convergence de $\left(\sum na_nx^{n-1}\right)$ est R car $\lim_{n\to\infty}\left|\frac{(n+1)a_{n+1}}{na_n}\right|=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=$ \overline{R} . La suite $(S'_n)_n$ est uniformément convergente dans [-r, r].

f est dérivable et on a $f'(x) = \lim_{n \to \infty} S_n(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} \ \forall x \in [-r, r] \ \text{et} \ \forall r \in]0, R[.$

Donc
$$f'(x) = \lim_{n \to \infty} S_n(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}, \ \forall x \in]-R, R[.$$

Corollaire 2.3.1

Soit la série $f(x) = \sum_{n=0}^{\infty} a_n x^n$ de rayon de convergence R; f est indéfiniment dérivable $(f \in C^{\infty}(] - R, R[))$; et l'on a: $\forall x \in]-R, R[, \quad f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} x^n.$

$$\forall x \in]-R, R[, \quad f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} x^n$$

En effet, si $f(x) = \sum_{n=0}^{\infty} a_n x^n$, par application de la proposition précédente on a, $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$, et par récurrence, la dérivée d'ordre k est donnée par la relation :

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)(n-2)\dots(n-k+1)a_n x^{n-k}.$$

De cette expression, il résulte que $f^{(k)}(0) = a_k k!$; c'est-à-dire que $a_k = \frac{f^{(k)}(0)}{k!}$.

Primitive d'une série entière 2.3.3

Définition 2.3.3

Une fonction $f: D \longrightarrow \mathbb{R}$ *admet une primitive s'il existe une fonction* $F: D \longmapsto \mathbb{R}$ *vérifiant* F' = f; (D étant le domaine de définition de f).

Proposition 2.3.3

Soit
$$\left(\sum a_n x^n\right)$$
 une série entière de rayon de convergence R et soit $f:]-R, R[\mapsto \mathbb{R}$ la fonction définie par $f(x) = \sum_{n=0}^{\infty} a_n x^n$. On considère la fonction $F:]-R, R[\mapsto \mathbb{R}$ définie par $F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$. Alors $F'(x) = f(x)$, $\forall x \in]-R, R[$.

Preuve.

Le rayon de convergence de la série entière $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ est R car $\lim_{n \to \infty} \left| \frac{a_{n+1}}{n+2} \frac{n+1}{a_n} \right| =$ $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{R}$. D'après le théorème précédent on conclut que F' = f.

Opérations sur les séries entières

Proposition 2.3.4

Soit (∑ a_nxⁿ),(∑ b_nxⁿ) deux séries entières ayant respectivement R et R' pour rayon de convergence.
1. Si R ≠ R', le rayon de convergence R'' de la série entière (∑ (a_n + b_n)xⁿ) est R'' = min{R, R'}.
2. Si R = R' le rayon de convergence de la série entière (∑ (a_n + b_n)xⁿ) est R'' ≥ R.

Preuve.

1) Supposons que R' < R.

i) $|x| < R' \Longrightarrow |x| < R$. Les deux séries $(\sum a_n x^n)$ et $(\sum b_n x^n)$ sont absolument convergentes. Comme $|(a_n + b_n)x^n| \le |a_n x^n| + |b_n x^n|$, il en découle que $\sum ((a_n + b_n)x^n)$ converge absolument pour $|x| < R' = \min\{R, R'\}$.

ii) Si |x| > R', deux cas de figure se présentent :

|x| > R, deux cas de ligure se presentent.

a) Si R' < |x| < R, la série $\left(\sum b_n x^n\right)$ converge absolument et $\left(\sum a_n x^n\right)$ diverge. Donc $\left(\sum (a_n + b_n)x^n\right)$ diverge.

b) Si R' < R < |x|, les deux séries divergent. Montrons $\left(\sum (a_n + b_n)x^n\right)$ diverge. Raisonnons par <u>l'absurde</u>. Si $\left(\sum (a_n + b_n)x^n\right)$ converge alors d'après le lemme d'Abel (2.1.1), la série $(x_0 + b_n)x^n$ converge absolument pour tout $x_0 \in \mathbb{R}$, tel que $|x_0| < |x|$ et en particulier pour x_0 vérifiant $R' < |x_0| < R < |x|$. D'où la contradiction. 2) Si R = R'. Il est clair que la série converge absolument si |x| < R = R'. Le rayon de convergence $R'' \ge R = R'$.

Exemple 2.3.1 Soient les deux séries $f(x) = \sum_{n=0}^{\infty} x^n$ et $g(x) = \sum_{n=0}^{\infty} \frac{1-2^n}{2^n} x^n$. Les deux séries ont pour rayon de convergence R=1. Par contre la série somme $(f+g)(x)=\sum_{n=0}^{\infty}\frac{1}{2^n}x^n$, a pour rayon de convergence R'' = 2.

Séries de Taylor 2.4

Problème

Soit f une fonction réelle à variable réelle x. Peut-on trouver une suite réelle (a_n) et r > 0 tels que l'on ait $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $\forall x \in]-r, r[?]$

Si ce problème admet une solution, on dit que f est développable en série entière au voisinage de 0.

On peut généraliser cette situation en se posant la même question pour une fonction définie au voisinage d'un point x_0 :

Existe-il une suite (a_n) et r > 0 tels que l'on ait $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$, $\forall x \in]x_0 - r, x_0 + r[?]$

Dans l'affirmatif, on dira que f est développable en série entière au voisinage de x_0 .

Proposition 2.4.1

Pour qu'une fonction f soit développable en série entière au voisinage d'un point $x_0 \in \mathbb{R}$, il est nécessaire qu'elle soit de classe C^{∞} dans un voisinage $]x_0 - \varepsilon, x_0 + \varepsilon[$ de x_0 et dans ce cas on $a : f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$.

Preuve.

Il suffit de remarquer que si $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$, alors et d'après le corollaire (2.3.1)

on a
$$a_n = \frac{f^{(n)}(x_0)}{n!}$$
.

Proposition 2.4.2

Soit $f:]-r,r[\longrightarrow \mathbb{R}$ une application de classe C^{∞} dans un voisinage de 0. On suppose qu'il existe M > 0 tel que pour tout $n \in \mathbb{N}$, et pour tout $x \in]-r,r[$, $\left|f^{(n)}(x)\right| \leq M$.

Alors la série $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ est simplement convergente dans]-r,r[et on a : $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \ \forall x \in]-r,r[$.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \ \forall x \in]-r, r[$$

Preuve.

Par hypothèse, il existe M > 0 tel que pour tout $k \in \mathbb{N}$ et pour tout $x \in]-r,r[$, on a $|f^{(k)}(x)| \le M$. Le développement de Taylor de f au voisinage de 0 à l'ordre n donne :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1}, \text{ avec } 0 < \theta < 1.$$

Pour démontrer le théorème, il suffit de prouver que $\lim_{n\to\infty} \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} = 0$.

En effet,

$$x \in]-r, r[\Longrightarrow |x| < r \Longrightarrow |\theta x| < r \Longrightarrow |f^{(n+1)}(\theta x)| \le M;$$

et donc $\left| \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} \right| \le \frac{Mr^{n+1}}{(n+1)!}.$

Or la série de terme général $u_n = \frac{Mr^{n+1}}{(n+1)!}$ est convergente car;

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{r}{n+1} = 0 \text{ et par suite } \lim_{n \to \infty} \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} = 0,$$
ce qui donne $f(x) = \sum_{n \to \infty} \frac{f^{(k)}(0)}{x^k} x^k$.

ce qui donne $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$.

Remarque 2.4.1 Il suffit de vérifier que le reste de Taylor, souvent appelé reste de Mac-Laurin , tend vers 0.

C'est à dire que
$$\lim_{n\to\infty} \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} = 0$$
,

Exemple 2.4.1

1) La fonction exponentielle : $f(x) = e^x$.

Cette fonction est indéfiniment dérivable dans \mathbb{R} , et on a $\forall n \in \mathbb{N}$, $f^{(n)}(x) = \mathrm{e}^x$. Le reste de Mac-Laurin est : $\frac{\mathrm{e}^{\theta x}}{(n+1)!}x^{n+1}$. On vérifie comme précédemment, que cette limite tend vers zéro quand n tend vers ∞ ; et ceci quelque soit x dans \mathbb{R} . Finalement :

$$\forall x \in \mathbb{R}, \quad e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

2) Les fonctions hyperboliques :

Les fonctions cosinus-hyperboliques et sinus-hyperboliques ont même rayon de convergence que la fonction exponentielle, c'est à dire $R = \infty$.

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \cdot$$

$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \cdot \dots$$

3) Les fonctions circulaires :

a) La fonction sinus:

$$\begin{array}{lll} f(x)=\sin x & \Longrightarrow & f(0)=0, & \text{et} & \forall p \in \mathbb{N} & f^{(4p)}(x)=\sin x \Longrightarrow f^{(4p)}(0)=0 \\ f'(x)=\cos x & \Longrightarrow & f'(0)=1, & \text{et} & \forall p \in \mathbb{N} & f^{(4p+1)}(x)=\cos x \Longrightarrow f^{(4p+1)}(0)=1 \\ f''(x)=-\sin x & \Longrightarrow & f''(0)=0, & \text{et} & \forall p \in \mathbb{N} & f^{(4p+2)}(x)=-\sin x \Longrightarrow f^{(4p+2)}(0)=0 \\ f'''(x)=-\cos x & \Longrightarrow & f'''(0)=-1, & \text{et} & \forall p \in \mathbb{N} & f^{(4p+3)}(x)=-\cos x \Longrightarrow f^{(4p+3)}(0)=-1 \end{array}$$

Les dérivées d'ordre quelconques sont majorées par 1, et ceci quelque soit x dans \mathbb{R} . On a alors :

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \text{et} \quad R = \infty.$$

b) La fonction cosinus :

$$f(x) = \cos x = (\sin x)' = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$
, et $R = \infty$.

4) La série du binôme

Considérons la fonction $x \longrightarrow f(x) = y = (1+x)^{\alpha}$, $\alpha \in \mathbb{R}$. Son domaine de définition est $]-1,\infty[$.

On a une relation simple entre la fonction f et sa dérivée.

 $y = (1 + x)^{\alpha}$, on a $y' = \alpha(1 + x)^{\alpha - 1}$ d'où l'équation différentielle :

$$y'(1+x) = \alpha y \tag{2.1}$$

Toutes les solutions de cette équation sont de la forme $y = C(1 + x)^{\alpha}$, où C est une constante arbitraire. Cherchons maintenant s'il existe une fonction f développable en série entière au voisinage de 0, $f(x) = \sum_{n=0}^{\infty} a_n x^n$ qui est solution de (2.1). Pour qu'une telle fonction existe, il est nécessaire d'avoir les relations :

$$0 = (1+x)f'(x) - \alpha f(x) = (1+x)\sum_{n=1}^{\infty} n a_n x^{n-1} - \alpha \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} [(n+1)a_{n+1} - (\alpha - n)a_n]x^n.$$

On déduit alors que $(n+1)a_{n+1}-(\alpha-n)a_n=0$ pour tout $n\in\mathbb{N}$ et donc $(n+1)a_{n+1}=(\alpha-n)a_n$ car une série entière est nulle si et seulement tous ses cœfficient sont nuls. Ceci permet d'avoir :

$$a_{1} = \alpha a_{0}$$

$$a_{2} = \frac{(\alpha - 1)a_{1}}{2}$$

$$\vdots \quad \vdots \quad \vdots$$

$$a_{n-1} = \frac{(\alpha - n + 2)a_{n-2}}{n - 1}$$

$$a_{n} = \frac{(\alpha - n + 1)a_{n-1}}{n}$$

. Ceci donne enfin

$$a_n = \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!} a_0$$

Soit la série $\sum_{n=0}^{\infty} a_0 \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)}{n!} x^n$. Le rayon de convergence R est donné par la relation :

$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{\alpha(\alpha - 1) \dots (\alpha - n)}{(n+1)!} \frac{n!}{\alpha(\alpha - 1) \dots (\alpha - n + 1)} \right| = \lim_{n \to \infty} \left| \frac{\alpha - n}{n+1} \right| = 1.$$

Par construction, la série $f(x) = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)}{n!} a_0 x^n$ est solution de

l'équation différentielle (2.1) , elle est donc de la forme $f(x) = C(1+x)^{\alpha}$. Puisque $f(0) = a_0 = C = 1$, on déduit que pour $x \in]-1,1[$,

$$(1+x)^{\alpha}=1+\sum_{n=1}^{\infty}\frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)}{n!}x^{n};\quad R=1.$$

Cette série est connue sous le nom de série du binôme.

Remarque 2.4.2 Si $\alpha = n \in \mathbb{N}$, alors les dérivées d'ordre n + 1 et plus de $(1 + x)^n$ sont toutes nulles. La série du binôme se réduit à un polynôme de degré n, et on retrouve la formule du binôme de Newton.

Exercices d'applications.

En utilisant le résultat ci-dessus, montrer qu'on a les développements suivants. Donner le domaine de convergence de ces séries.

a)
$$\sqrt{1+x} = 1 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1 \cdot 3 \cdot ... (2n-3)}{2 \cdot 4 \cdot ... 2n} x^n = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \cdots$$

b)
$$\frac{1}{\sqrt{1+x}} = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{1 \cdot 3 \dots (2n-1)}{2 \cdot 4 \dots 2n} x^n = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 + \dots$$

Remarque 2.4.3

Un développement en série entière au voisinage de 0 d'une fonction f peut s'obtenir

grâce au développement de sa dérivée f'. Par exemple, le développement en série entière des fonctions $\arcsin x$ s'obtient facilement en remarquant que :

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} = 1 + \sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{2.4.6...2n} x^{2n} = 1 + \frac{1}{2}x^2 + \frac{3}{8}x^4 + \frac{5}{16}x^6 + \frac{35}{128}x^8 + \cdots$$

Sachant que $\arcsin 0 = 0$,

$$\arcsin x = x + \sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{2.4.6...2n} \frac{x^{2n+1}}{2n+1} = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \frac{5}{112}x^7 + \frac{35}{1152}x^9 + \cdots$$

Par ce procédé, il est facile par exemple de développer les fonctions $x \longrightarrow \arccos x$, $x \longrightarrow \operatorname{Argsh} x$, $x \longrightarrow \operatorname{Arctg} x$ et $x \longrightarrow \operatorname{Argth} x$.

Attention : la fonction $x \longrightarrow \operatorname{Argch} x$ n'est pas définie dans un voisinage de zéro, son domaine de définition est $[1, \infty[$.

5) La fonction $x \longrightarrow \frac{1}{1-x}$.

On remarque d'une part que pour |x| < 1, $\lim |x|^n = 0$ et d'autre part

$$1 + x + x^{2} + \ldots + x^{n} + \frac{x^{n+1}}{1-x} = \frac{1}{1-x}.$$

D'où:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \text{ avec } R = 1 \quad \text{ et } \quad \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, (R = 1).$$

6) La fonction $x \longrightarrow \text{Log}(1 + x)$.

Certains développements en série s'obtiennent au moyen des théorèmes sur l'intégration et la dérivation des séries entières.

Du développement $\frac{1}{1+x}$ on déduit par intégration :

 $Log(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}$, (R=1). La constante d'intégration est nulle car Log 1 = 0.

On a de même
$$Log(1-x) = -\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}$$
, $(R=1)$.

On remarque que ces fonctions sont définies aussi pour des valeurs n'appartenant pas à l'intervalle ouvert] – 1, 1[mais leurs développements en série de Taylor au voisinage de 0 ne sont convergents que pour |x| < 1.

Formule très utile, donc à retenir :

$$\forall x \in [-1, 1[: \sum_{n=1}^{\infty} \frac{x^n}{n} = -\log(1-x), \quad \underline{R} = 1.$$

2.4.1 Développement en série entière au voisinage d'un point x_0

Soit $x \longrightarrow f(x)$ une fonction définie au voisinage d'un point x_0 et posons $X = x - x_0$.

Définition 2.4.1 On dit que f est développable en série entière au voisinage de x_0 si la fonction $X \longrightarrow f(X + x_0)$ est développable en série entière au voisinage de 0. On aura alors :

$$f(X + x_0) = \sum_{n=0}^{\infty} a_n X^n \text{ pour}|X| < R.$$

Donc
$$f(x) = f(X + x_0) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 pour tout x vérifiant $|x - x_0| < R$

Exemple 2.4.2 On cherche le développement en série entière de la fonction $f(x) = \sqrt{x}$ au voisinage de $x_0 = 3$. On pose X = x - 3 et on obtient :

$$\sqrt{x} = \sqrt{X + 3} = \sqrt{3\left(1 + \frac{X}{3}\right)} = \sqrt{3}\left(1 + \frac{X}{3}\right)^{1/2} = \sqrt{3}\left(1 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1 \cdot 3 \dots (2n-3)}{2 \cdot 4 \dots 2n} \left(\frac{X}{3}\right)^n\right)$$

Finalement:
$$\sqrt{x} = \sqrt{3} \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3^n} \cdot \frac{1 \cdot 3 \dots (2n-3)}{2 \cdot 4 \dots 2n} (x-3)^n \right).$$

Domaine de convergence de cette série. Puisque la série entière en $\frac{X}{3}$ a pour rayon de convergence R = 1, ce qui veut dire que pour

$$\left| \frac{X}{3} \right| < 1 \Longleftrightarrow -3 < X < 3 \Longleftrightarrow -3 < x - 3 < 3 \Longleftrightarrow 0 < x < 6,$$

la série est absolument convergente.

Pour
$$x = 0$$
, on a: $\sqrt{3} \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3^n} \cdot \frac{1.3...(2n-3)}{2.4...2n} (-3)^n \right) = \sqrt{3} \left(1 - \sum_{n=1}^{\infty} \frac{1.3...(2n-3)}{2.4...2n} \right).$

Le critère de Duhamel montre que la série $\sum_{n=1}^{\infty} \frac{1.3...(2n-3)}{2.4...2n}$ est convergente.

Pour x = 6, c'est la même série mais alternée, donc convergente, car absolument convergente.

En conclusion, la série trouvée a pour domaine de convergence : $\Delta = [0, 6]$.

Remarque 2.4.4

 $\underset{\infty}{\text{Le cas }} x = 0 \text{ donne} :$

$$\sum_{n=1}^{\infty} \frac{1.3...(2n-3)}{2.4...2n} = 1.$$

Le cas
$$x = 6$$
 donne:

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1 \cdot 3 \dots (2n-3)}{2 \cdot 4 \dots 2n} = \sqrt{2} - 1.$$

Sommation de quelques séries entières

Peut dans certains cas reconnaître, dans une série entière, le développement d'une fonction connue; trouver cette fonction, c'est faire la sommation de la série entière. Ce problème est l'inverse de celui qui a été étudié précédemment.

1^{er} exemple

Soit la série entière $(\sum a_n x^n)$, le terme a_n est de la forme : $a_n = \frac{P(n)}{n!}$ où P(n) étant un polynôme en *n* de degré *m*. on met P(n) sous la forme :

$$P(n) = \alpha_0 + \alpha_1 n + \alpha_2 n(n-1) + \alpha_3 n(n-1)(n-2) + \dots = \alpha_0 + \sum_{k=1}^m \alpha_k n(n-1) \cdots (n-k+1).$$

On a :
$$P(k) = \alpha_0 + \alpha_1 k + \alpha_2 k(k-1) + \alpha_3 k(k-1)(k-2) + \cdots + \alpha_k k!$$
, cette relation de récurrence

permet de calculer toutes les valeurs de α_k . On calcule α_0 , puis α_1 , puis α_2 jusqu'à α_m . exemple : Sommer la série suivante.

$$f(x) = \sum_{n=0}^{\infty} (-4n^4 + 25n^3 - 49n^2 + 31n + 2) \frac{x^n}{n!}$$

son rayon de convergence étant l'infini, posons : $P(n) = -4n^4 + 25n^3 - 49n^2 + 31n + 2$ = $\alpha_0 + \alpha_1 n + \alpha_2 n(n-1) + \alpha_3 n(n-1)(n-2) + \alpha_4 n(n-1)(n-2)(n-3)$.

Pour n = 0 on a $P(0) = \alpha_0 = 2$

Pour n = 1 on a $P(1) = \alpha_0 + \alpha_1 = 5 = 2 + \alpha_1 \iff \alpha_1 = 3$

Pour n = 2 on a $P(2) = \alpha_0 + 2\alpha_1 + 2\alpha_2 = 4 \iff \alpha_2 = -2$

Pour n = 3 on a $P(3) = \alpha_0 + 3\alpha_1 + 6\alpha_2 + 6\alpha_3 = 5 \iff \alpha_3 = 1$

Pour n = 4 on a $P(4) = \alpha_0 + 4\alpha_1 + 12\alpha_2 + 24\alpha_3 + 24\alpha_4 = -82 \iff \alpha_3 = -4$

 $-4n^4 + 25n^3 - 49n^2 + 31n + 2 = 2 + 3n - 2n(n-1) + n(n-1)(n-2) - 4n(n-1)(n-2)(n-3).$

La somme est alors:

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{2}{n!} + \frac{3n}{n!} - \frac{2n(n-1)}{n!} + \frac{n(n-1)(n-2)}{n!} - \frac{4n(n-1)(n-2)(n-3)}{n!} \right) x^{n}$$

$$= 2 \sum_{n=0}^{\infty} \frac{x^{n}}{n!} + 3 \sum_{n=1}^{\infty} \frac{x^{n}}{(n-1)!} - 2 \sum_{n=2}^{\infty} \frac{x^{n}}{(n-2)!} + \sum_{n=3}^{\infty} \frac{x^{n}}{(n-3)!} - 4 \sum_{n=4}^{\infty} \frac{x^{n}}{(n-4)!}$$

$$= 2 \sum_{n=0}^{\infty} \frac{x^{n}}{n!} + 3x \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} - 2x^{2} \sum_{n=2}^{\infty} \frac{x^{n-2}}{(n-2)!} + x^{3} \sum_{n=3}^{\infty} \frac{x^{n-3}}{(n-3)!} - 4x^{4} \sum_{n=4}^{\infty} \frac{x^{n-4}}{(n-4)!}$$

$$= \left(2 + 3x - 2x^{2} + x^{3} - 4x^{4}\right) e^{x}.$$

On a par exemple : $\sum_{n=0}^{\infty} \frac{-4n^4 + 25n^3 - 49n^2 + 31n + 2}{n!} = f(1) = 0.$

2^{ème} exemple

Soit la série entière $(\sum a_n x^n)$, le terme a_n est de la forme : $a_n = P(n)$ où P(n) étant un polynôme en n de degré m.

on met P(n) sous la forme :

 $P(n) = \alpha_0 + \alpha_1(n+1) + \alpha_2(n+1)(n+2) + \alpha_3(n+1)(n+2)(n+3) + \cdots$

$$\alpha_0 + \sum_{k=1}^m \alpha_k(n+1)(n+2)\cdots(n+k).$$

On a : $P(k) = \alpha_0 + \alpha_1(k+1) + \alpha_2(k+1)(k+2) + \alpha_3(k+1)(k+2)(k+3) + \cdots + \alpha_k \frac{(k+m)!}{k!}$, cette relation de récurrence permet de calculer toutes les valeurs de α_k . On calcule α_0 , puis α_1 , puis α_2 jusqu'à α_m .

exemple: Sommer la série suivante.

$$f(x) = \sum_{n=0}^{\infty} (n^3 + 9n^2 + 20n + 11)x^n$$

son rayon de convergence étant égal à 1. Posons :

 $P(n) = n^3 + 9n^2 + 20n + 11 = \alpha_0 + \alpha_1(n+1) + \alpha_2(n+1)(n+2) + \alpha_3(n+1)(n+2)(n+3).$

Pour n = -1 on a $P(-1) = \alpha_0 = -1$.

Pour n = -2 on a $P(-2) = \alpha_0 - \alpha_1 = -1 = -1 - \alpha_1 \iff \alpha_1 = 0$.

Pour n = -3 on a $P(-3) = \alpha_0 - 2\alpha_1 + 2\alpha_2 = 5$ \iff $\alpha_2 = 3$.

Pour n = -4 on a $P(-4) = \alpha_0 - 3\alpha_1 + 6\alpha_2 - 6\alpha_3 = 11 \iff \alpha_3 = 1$. D'où : P(n) = -1 + 3(n+1) + (n+1)(n+2)(n+3), et donc

$$f(x) = \sum_{n=0}^{\infty} (-1 + 3(n+1)(n+2) + (n+1)(n+2)(n+3))x^n$$
$$= -\sum_{n=0}^{\infty} x^n + 3\sum_{n=0}^{\infty} (n+1)(n+2)x^n + \sum_{n=0}^{\infty} (n+1)(n+2)(n+3)x^n.$$

Les trois sommes se déduisent de la série géométrique.

$$\bullet \quad -\sum_{n=0}^{\infty} x^n = -\frac{1}{1-x}$$

•
$$3\sum_{n=0}^{\infty} (n+1)(n+2)x^n = 3\left(\sum_{n=0}^{\infty} x^{n+2}\right)^n = 3\left(\frac{1}{1-x} - 1 - x\right)^n$$

= $3\left(\frac{1}{(1-x)^2} - 1\right)^n = \frac{6}{(1-x)^3}$

$$\sum_{n=0}^{\infty} (n+1)(n+2)(n+3)x^n = \left(\sum_{n=0}^{\infty} x^{n+3}\right)^{n} = \left(1+x+x^2+\frac{1}{1-x}\right)^{n}$$
$$= \left(1+2x+\frac{1}{(1-x)^2}\right)^n = \left(2+\frac{-2}{(1-x)^3}\right)^n = \frac{6}{(1-x)^4}$$

On a:

$$f(x) = -\frac{1}{1-x} + \frac{6}{(1-x)^3} + \frac{6}{(1-x)^4} = \frac{x^3 - 3x^2 - 3x + 11}{(1-x)^4}$$

pour x réel la série ne converge pas aux bornes de l'intervalle de convergence. Le domaine de convergence est alors]-1,1[.

3ème exemple

Soit la série entière $(\sum a_n x^n)$, le terme a_n est de la forme : $a_n = \frac{1}{P(n)}$ où P(n) étant un polynôme en n de degré m avec des racines simples et entières.

On décompose a_n éléments simples et on utilisera la formule $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\log(1-x)$.

Exemple: Sommer la série suivante.

$$f(x) = \sum_{n=3}^{\infty} \frac{x^n}{(n-2)(n+1)(n+3)}$$

son rayon de convergence est égal à 1.

La décomposition en éléments simples donne :

$$\frac{1}{(n-2)(n+1)(n+3)} = \frac{1}{15(n-2)} - \frac{1}{6(n+1)} + \frac{1}{10(n+3)}.$$

$$\bullet \sum_{n=3}^{\infty} \frac{x^n}{n-2} = x^2 \sum_{n=3}^{\infty} \frac{x^{n-2}}{n-2} = x^2 \sum_{n=1}^{\infty} \frac{x^n}{n} = x^2 \left(-\log(1-x) \right) = -x^2 \log(1-x).$$

$$\bullet \sum_{n=3}^{\infty} \frac{x^n}{n+1} = \frac{1}{x} \sum_{n=3}^{\infty} \frac{x^{n+1}}{n+1} = \frac{1}{x} \sum_{n=4}^{\infty} \frac{x^n}{n} = \frac{1}{x} \left(-\log(1-x) - x - \frac{x^2}{2} - \frac{x^3}{3} \right).$$

$$\bullet \sum_{n=3}^{\infty} \frac{x^n}{n+3} = \frac{1}{x^3} \sum_{n=3}^{\infty} \frac{x^{n+3}}{n+3} = \frac{1}{x^3} \sum_{n=6}^{\infty} \frac{x^n}{n} = \frac{1}{x^3} \left(-\log(1-x) - x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} \right).$$

On obtient finalement,

$$f(x) = \frac{1}{1800x^3} \left[\left(-120x^5 + 300x^2 - 180 \right) \text{Log}(1-x) + 64x^5 + 105x^4 + 240x^3 - 90x^2 - 180x \right].$$

Remarques:

- 1. La limite de f(x) quand x tend vers 1 est bien finie, car $(-120x^5 + 300x^2 180) \log(1 x) = -60(2x^3 + 4x^2 + 6x + 3)(1 x)^2 \log(1 x)$ et $\lim_{x \to 1} f(x) = 139/1800$.
- 2. Un développement limité au voisinage de 0 de $(-120x^5 + 300x^2 180) \log(1 x) + 64x^5 + 105x^4 + 240x^3 90x^2 180x$ montre Aussi que la limite de f(x) quand x tend vers 0 est bien finie et vaut f(0) = 0
- 3. Puisque la série donnée est convergente pour x = -1, le domaine de convergence de la série est donc [-1,1].
- 4. On déduit de ces calculs et ces remarques que :

$$f(1) = \sum_{n=3}^{\infty} \frac{1}{(n-2)(n+1)(n+3)} = \frac{139}{1800}$$
$$f(-1) = \sum_{n=3}^{\infty} \frac{(-1)^n}{(n-2)(n+1)(n+3)} = \frac{109 - 240 \log 2}{1800}$$

En utilisant toujours la formule $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\log(1-x)$, on peut sommer des séries de

type
$$\sum_{n=m}^{\infty} \frac{x^n}{an+b}$$
 avec $a \in \mathbb{N}^*$, $b \in \mathbb{Z}^*$ et $\frac{b}{a} \notin \mathbb{Z}^*$.

4^{ème} exemple

Sommer la série suivante,

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{2n+1}$$

son rayon de convergence est égal à 1. On a f(0) = 1

• $1^{er} \cos x > 0$:

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{2n+1} = \sum_{n=0}^{\infty} \frac{\left(\sqrt{x}\right)^{2n+1} \frac{1}{\sqrt{x}}}{2n+1} = \frac{1}{\sqrt{x}} \sum_{n=0}^{\infty} \frac{\left(\sqrt{x}\right)^{2n+1}}{2n+1}.$$

Posons $0 < \sqrt{x} = t \in]0,1[$ on a alors $: \sum_{n=0}^{\infty} \frac{\left(\sqrt{x}\right)^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} \frac{t^{2n+1}}{2n+1}$ par dérivation puis intégration on obtient :

$$\sum_{n=0}^{\infty} \frac{t^{2n+1}}{2n+1} = \frac{1}{2} \operatorname{Log} \frac{1+t}{1-t} \text{ et donc}:$$

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{2n+1} = \begin{cases} 1 & \text{si } x = 0\\ \frac{1}{2\sqrt{x}} \log \frac{1+\sqrt{x}}{1-\sqrt{x}} & \text{si } x \in]0,1[\end{cases}$$

• $2^{\text{ème}} \cos x < 0$:

Posons
$$x = -X$$
 on a $f(-X) = g(X) = \sum_{n=0}^{\infty} \frac{(-1)^n X^n}{2n+1} = \frac{1}{\sqrt{X}} \sum_{n=0}^{\infty} \frac{(-1)^n \left(\sqrt{X}\right)^{2n+1}}{2n+1} \cdot .$

Posons
$$\sqrt{X} = t \in]0,1[> \text{ on a alors}: \sum_{n=0}^{\infty} \frac{(-1)^n \left(\sqrt{X}\right)^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{2n+1} \text{ par dérivation}$$

puis intégration on obtient :

$$\sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{2n+1} = \text{Arctg } t \text{ et en conclusion finale on a donc :}$$

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{2n+1} = \begin{cases} 1 & \text{si } x = 0\\ \frac{1}{2\sqrt{x}} \log \frac{1+\sqrt{x}}{1-\sqrt{x}} & \text{si } x \in]0,1[\\ \frac{\text{Arctg } \sqrt{-x}}{\sqrt{-x}} & \text{si } x \in]-1,0[\end{cases}$$

Remarque : Les fonctions trouvées sont continues en 0 et valent 1. Pour le domaine de convergence de la série étudiée est $D_f = [-1, 1[$ et on trouve pour x = -1 :

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \text{Arctg } 1 = \frac{\pi}{4}$$

5^{ème} exemple

De la même manière on peut sommer des séries de type :

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{(2n)!}$$

son rayon de convergence est égal à l'infini. On a f(0) = 1.

•
$$x > 0$$
 $f(x) = \sum_{n=0}^{\infty} \frac{(\sqrt{x})^{2n}}{(2n)!} = \text{ch } \sqrt{x}.$

•
$$x < 0$$
 $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (\sqrt{-x})^{2n}}{(2n)!} = \cos \sqrt{-x}.$

Beaucoup de séries ne peuvent être sommer à l'aide de fonctions élémentaires, et ceci malgré leur simple écriture.

6ème exemple La fonction de Lax:

$$\sigma(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

La série étant normalement convergente pour tout $x \in [-1, 1]$. Facilement on trouve :

$$\sigma'(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = \frac{-\log(1-x)}{x},$$

fonction dont la primitive n'est pas « <u>une fonction élémentaire.</u> » Il existe une relation fonctionnelle intéressante pour $\sigma(x)$. On a :

$$\sigma(x) = -\int_0^x \frac{\log(1-t)}{t} dt$$

C'est une intégrale impropre en 0 et en 1. La limite en 0 de $\frac{-\text{Log}(1-x)}{x}$ vaut 1, au voisinage de 1, on a : $\frac{\text{Log}(1-t)}{t} \sim \text{Log}(1-t)$ dont l'intégrale existe. une simple intégration par partie donne :

$$\sigma(x) = -\left[\operatorname{Log}(1-t)\operatorname{Log} t\right]_0^x + \int_0^x \frac{\operatorname{Log} t}{1-t} dt$$

on a $\lim_{t\to 0} (\text{Log}(1-t) \text{Log}\,t) = 0$, un changement de variables X=1-t dans la dernière intégrale donne :

$$\int_0^x \frac{\log t}{1-t} dt = \int_1^{1-x} \frac{-\log(1-X)}{X} dX = -\int_1^0 \frac{\log(1-X)}{X} dX - \int_0^{1-x} \frac{\log(1-X)}{X} dX$$

On verra au chapitre sur les séries de Fourier que

$$-\int_{1}^{0} \frac{\log(1-X)}{X} dX = \int_{0}^{1} \frac{\log(1-X)}{X} dX = \sigma(1) = \sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6}.$$

En conclusion on a:

$$\forall x \in]0,1[\quad \sigma(x) + \sigma(1-x) + \operatorname{Log} x \operatorname{Log}(1-x) = \frac{\pi^2}{6} \qquad (\star)$$

Remarques:

- La formule (*) reste valable pour $x \in [0,1]$, car $\lim_{x \to 0} \text{Log}(1-x) = \lim_{x \to 0} -x \text{Log}(x) = 0$ et $\lim_{x \to 1} \text{Log}(1-x) = \lim_{t \to 0} \text{Log}(1-t) \text{Log}(1-t) = 0$ $x \in [0;1/2] \iff 1-x \in [1/2;1]$, connaissant les images de tous les nombres
- $x \in [0; 1/2] \iff 1 x \in [1/2; 1]$, connaissant les images de tous les nombres de l'intervalle [0, 1/2] on peut déduire celles des nombres de l'intervalle [1/2, 1]; et généralement si a et b sont deux nombres réels de [0; 1] tels que a + b = 1 alors on a :

$$\sum_{n=1}^{\infty} \frac{b^n}{n^2} = \frac{\pi^2}{6} - \text{Log } a \log(1-a) - \sum_{n=1}^{\infty} \frac{a^n}{n^2}$$

• En posant x = 1/2 on obtient $2\sigma(1/2) + \text{Log}^2(1/2) = \pi^2/6$ d'où

$$\sigma(1/2) = \sum_{n=1}^{\infty} \frac{1}{2^n n^2} = \frac{\pi^2}{12} - \frac{1}{2} \operatorname{Log}^2 2 \sim 0.58224$$

6^{ème} exemple

Donner le rayon de convergence de la série suivante puis calculer sa somme :

$$f(x) = \sum_{n=1}^{\infty} n^{(-1)^n} x^n$$

On a immédiatement

On a immediatement
$$1/R = \lim_{n \to \infty} \sqrt[n]{|n^{(-1)^n}|} = \begin{cases} \lim_{n \to \infty} \sqrt[2n]{|2n|} = 1 & \text{si } n \text{ est paire} \\ \lim_{n \to \infty} \sqrt[2n+1]{|1/2n+1|} = 1 & \text{si } n \text{ est impaire} \end{cases}$$

D'où R = 1.

On peut écrire cette somme sous la forme :

$$f(x) = x + 2x^{2} + \frac{1}{3}x^{3} + 4x^{4} + \frac{1}{5}x^{5} + 6x^{6} + \frac{1}{7}x^{7} + 8x^{8} + \cdots$$

$$= \left(2x^{2} + 4x^{4} + 6x^{6} + 8x^{8} + \cdots\right) + \left(x + \frac{1}{3}x^{3} + \frac{1}{5}x^{5} + \frac{1}{7}x^{7} + \cdots\right)$$

$$= \sum_{n=1}^{\infty} 2nx^{2n} + \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}.$$

La première série est divergente pour $x = \pm 1$, donc le domaine de convergence de la série donnée est] – 1, 1[, (La $2^{\text{ème}}$ série est aussi convergente pour $x = \pm 1$). On peut écrire :

$$f(x) = x \left(\sum_{n=0}^{\infty} x^{2n} \right)' + \operatorname{Arctg} x = x \left(\sum_{n=0}^{\infty} (x^2)^n \right)' + \operatorname{Arctg} x.$$

pour obtenir finalement

$$f(x) = x \left(\frac{1}{1 - x^2}\right)' + \text{Arctg } x = \frac{2x^2}{(1 - x^2)^2} + \text{Arctg } x \quad \forall x \in]-1, 1[.$$

Comme application on a pour $x = \frac{1}{\sqrt{2}}$

$$\sum_{n=1}^{\infty} \frac{n^{(-1)^n}}{\sqrt{3^n}} = \frac{\pi + 9}{6} \sim 2,0236.$$

Exercice 1 Résoudre l'équation différentielle suivante ; en utilisant les séries entières :

$$\begin{cases} y'' - xy = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

Solution:

Posons
$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \dots + a_n x^n + \dots = \sum_{n=0}^{\infty} a_n x^n$$
.
On a: $y'' = 2.1.a_2 + 3.2a_3 x + 4.3.a_4 x^2 + 5.4.a_5 x^3 + \dots + (n+2)(n+1)a_{n+2} x^n + \dots$
$$= \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

En substituant dans notre équation différentielle, on trouve : $2.1.a_2 + (3.2a_3 - a_0)x + (4.3.a_4 - a_1)x^2 + (5.4.a_5 - a_2)x^3 + \cdots + ((n+2)(n+1)a_{n+2} - a_{n-1})x^n + \cdots = 0$. On obtient les équations algébriques suivantes :

$$\begin{cases} 2.1.a_2 = 0\\ 3.2a_3 - a_0 = 0\\ 4.3.a_4 - a_1 = 0\\ 5.4.a_5 - a_2 = 0\\ \dots\\ (n+2)(n+1)a_{n+2} - a_{n-1} = 0\\ \dots \end{cases}$$

On constate que $y(0) = 1 \implies a_0 = 1$ et $y'(0) = 0 \implies a_1 = 0$, comme la première équation algébrique donne aussi $a_2 = 0$, on a alors

$$a_0 = 1$$
, $a_1 = a_2 = 0$, $a_3 = \frac{1}{2.3} = \frac{1}{3!}$ $a_4 = a_5 = 0$, $a_6 = \frac{1}{2.3.5.6} = \frac{4}{6!}$, $a_7 = a_8 = 0$, $a_9 = \frac{1}{2.3.5.6.89} = \frac{4.7}{9!}$. On remarque que seulement les cœfficients a_{3n} , $n \in \mathbb{N}$ sont

non nuls. On obtient finalement :

$$a_{3n+1} = a_{3n+2} = 0$$
 et $a_{3n} = \frac{1.4.7...(3n-2)}{(3n)!}$.

La solution ainsi construite sera:

$$y_1(x) = 1 + \sum_{n=1}^{\infty} \frac{1.4.7...(3n-2)}{(3n)!} x^{3n}.$$

Son domaine de convergence est donné par la règle de d'Alembert, on trouve que $R = \infty$. La série est convergente pour tout x dans \mathbb{R} .

Remarque 2.4.5 α : Le même problème avec d'autres conditions, par exemple :

$$\begin{cases} y'' - xy = 0 \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$$

On a une autre solution, et on trouve $a_0 = 0$ et $a_1 = 1$ et :

$$y_2(x) = x + \sum_{n=1}^{\infty} \frac{2.5.8...(3n-1)}{(3n+1)!} x^{3n+1}.$$

 β : L'équation y'' - xy = 0 a pour solution générale $y(x) = a.y_1(x) + b.y_2(x)$, où a et b sont deux réels quelconques.

 y_1 et y_2 sont deux fonctions spéciales, qu'on ne peut pas exprimer à l'aide de fonctions élémentaires.