Travaux Diriges 4 (10/11/12)

Polynômes de Taylor et Séries Entières

1. Polynômes de Taylor Trouvez le polynôme de Taylor d'ordre n centré en a.

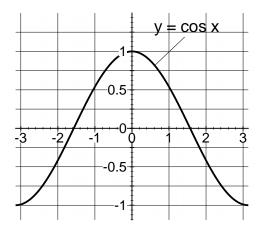
(a)
$$f(x) = \frac{1}{x}, a = 2, n = 4$$

(a)
$$f(x) = \frac{1}{x}$$
, $a = 2$, $n = 4$ (b) $f(x) = \frac{1}{1+x}$, $a = 0$, $n = 5$ (c) $\sin(\pi x)$, $a = 0$, $n = 3$

$$(\mathbf{c}) \quad \sin(\pi x), \, a = 0, \, n = 3$$

2. Graphe d'un polynôme de Taylor Utilisez les polynômes de MacLaurin $P_n(x)$ de la fonction $f(x) = \cos x$ pour compléter le tableau suivant. Représentez les polynômes et la fonction sur le même graphe. (Remarque: Les polynômes $P_0(x)$ et $P_2(x)$ sont appelées Approximation constante et Approximation quadratique respectivement). Comparez $P_0(x)$ et $P_1(x)$. Expliquez.

x	-3	-2	-1	0	1	2	3
$\cos x$							
$P_0(x)$							
$P_2(x)$							
$P_4(x)$							



3. Approximation par les polynômes de Taylor

- (1) Estimez l'erreur si $P_4(x) = 1 \frac{x^2}{2!} + \frac{x^4}{4!}$ est utilisé pour évaluer $\cos x$ en x = 0.3.
- (2) Pour quelle valeur de n peut-on approcher $f(x) = \ln(1+x)$ par son polynôme de MacLaurin $P_n(x)$ au point x = 0.5 si l'erreur ne doit pas dépasser 0.0001?
- (3) Pour quelles valeurs de x peut-on remplacer $f(x) = \sin x$ par son polynôme $P_3(x)$ avec une précision de 0.01?

4. Séries entières Déterminez le rayon R et l'intervalle de convergence de chaque série:

(a)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{10^n}$$

$$\mathbf{(b)} \quad \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n!}$$

(c)
$$\sum_{n=1}^{\infty} (2n)! \left(\frac{x}{2}\right)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{x^n}{n\sqrt{n} \, 3^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)^n}{n2^n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{10^n}$$
 (b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n!}$$
 (c)
$$\sum_{n=1}^{\infty} (2n)! \left(\frac{x}{2}\right)^n$$
 (d)
$$\sum_{n=1}^{\infty} \frac{x^n}{n\sqrt{n} \, 3^n}$$
 (e)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (x+2)^n}{n2^n}$$
 (f)
$$\sum_{n=1}^{\infty} \frac{1+2+3+\cdots+n}{1^2+2^2+3^2+\cdots+n^2} x^n$$
 (g)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} x^n$$

1

$$(\mathbf{g}) \quad \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} x^r$$