CHAPTER

1

VECTOR
ANALYSIS

Vector analysis is a mathematical subject which is much better taught by math-
ematicians than by engineers. Most junior and senior engineering students, how-
ever, have not had the time (or perhaps the inclination) to take a course in vector
analysis, although it is likely that many elementary vector concepts and opera-
tions were introduced in the calculus sequence. These fundamental concepts and
operations are covered in this chapter, and the time devoted to them now should
depend on past exposure.

The viewpoint here is also that of the engineer or physicist and not that of
the mathematician in that proofs are indicated rather than rigorously expounded
and the physical interpretation is stressed. It is easier for engineers to take a more
rigorous and complete course in the mathematics department after they have
been presented with a few physical pictures and applications.

It is possible to study electricity and magnetism without the use of vector
analysis, and some engineering students may have done so in a previous electrical
engineering or basic physics course. Carrying this elementary work a bit further,
however, soon leads to line-filling equations often composed of terms which all
look about the same. A quick glance at one of these long equations discloses little
of the physical nature of the equation and may even lead to slighting an old
friend.

Vector analysis is a mathematical shorthand. It has some new symbols,
some new rules, and a pitfall here and there like most new fields, and it demands
concentration, attention, and practice. The drill problems, first met at the end of
Sec. 1.4, should be considered an integral part of the text and should all be
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worked. They should not prove to be difficult if the material in the accompany-
ing section of the text has been thoroughly understood. It take a little longer to
“read” the chapter this way, but the investment in time will produce a surprising
interest.

1.1 SCALARS AND VECTORS

The term scalar refers to a quantity whose value may be represented by a single
(positive or negative) real number. The x, y, and z we used in basic algebra are
scalars, and the quantities they represent are scalars. If we speak of a body falling
a distance L in a time ¢, or the temperature 7 at any point in a bowl of soup
whose coordinates are x, y, and z, then L, ¢, T, x, y, and z are all scalars. Other
scalar quantities are mass, density, pressure (but not force), volume, and volume
resistivity. Voltage is also a scalar quantity, although the complex representation
of a sinusoidal voltage, an artificial procedure, produces a complex scalar, or
phasor, which requires two real numbers for its representation, such as amplitude
and phase angle, or real part and imaginary part.

A vector quantity has both a magnitude' and a direction in space. We shall
be concerned with two- and three-dimensional spaces only, but vectors may be
defined in n-dimensional space in more advanced applications. Force, velocity,
acceleration, and a straight line from the positive to the negative terminal of a
storage battery are examples of vectors. Each quantity is characterized by both a
magnitude and a direction.

We shall be mostly concerned with scalar and vector fields. A field (scalar
or vector) may be defined mathematically as some function of that vector which
connects an arbitrary origin to a general point in space. We usually find it
possible to associate some physical effect with a field, such as the force on a
compass needle in the earth’s magnetic field, or the movement of smoke particles
in the field defined by the vector velocity of air in some region of space. Note that
the field concept invariably is related to a region. Some quantity is defined at
every point in a region. Both scalar fields and vector fields exist. The temperature
throughout the bowl of soup and the density at any point in the earth are
examples of scalar fields. The gravitational and magnetic fields of the earth,
the voltage gradient in a cable, and the temperature gradient in a soldering-
iron tip are examples of vector fields. The value of a field varies in general
with both position and time.

In this book, as in most others using vector notation, vectors will be indi-
cated by boldface type, for example, A. Scalars are printed in italic type, for
example, 4. When writing longhand or using a typewriter, it is customary to
draw a line or an arrow over a vector quantity to show its vector character.
(Caution: This is the first pitfall. Sloppy notation, such as the omission of the
line or arrow symbol for a vector, is the major cause of errors in vector analysis.)

I We adopt the convention that “magnitude” infers “absolute value”; the magnitude of any quantity is
therefore always positive.
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1.2 VECTOR ALGEBRA

With the definitions of vectors and vector fields now accomplished, we may
proceed to define the rules of vector arithmetic, vector algebra, and (later) of
vector calculus. Some of the rules will be similar to those of scalar algebra, some
will differ slightly, and some will be entirely new and strange. This is to be
expected, for a vector represents more information than does a scalar, and the
multiplication of two vectors, for example, will be more involved than the multi-
plication of two scalars.

The rules are those of a branch of mathematics which is firmly established.
Everyone “‘plays by the same rules,” and we, of course, are merely going to look
at and interpret these rules. However, it is enlightening to consider ourselves
pioneers in the field. We are making our own rules, and we can make any rules
we wish. The only requirement is that the rules be self-consistent. Of course, it
would be nice if the rules agreed with those of scalar algebra where possible, and
it would be even nicer if the rules enabled us to solve a few practical problems.

One should not fall into the trap of ““algebra worship’ and believe that the
rules of college algebra were delivered unto man at the Creation. These rules are
merely self-consistent and extremely useful. There are other less familiar alge-
bras, however, with very different rules. In Boolean algebra the product AB can
be only unity or zero. Vector algebra has its own set of rules, and we must be
constantly on guard against the mental forces exerted by the more familiar rules
or scalar algebra.

Vectorial addition follows the parallelogram law, and this is easily, if inac-
curately, accomplished graphically. Fig. 1.1 shows the sum of two vectors, A and
B. It is easily seen that A + B = B + A, or that vector addition obeys the com-
mutative law. Vector addition also obeys the associative law,

A+(B+C)=(A+B)+C

Note that when a vector is drawn as an arrow of finite length, its location is
defined to be at the tail end of the arrow.

Coplanar vectors, or vectors lying in a common plane, such as those shown
in Fig. 1.1, which both lie in the plane of the paper, may also be added by
expressing each vector in terms of “horizontal” and ‘‘vertical” components
and adding the corresponding components.

Vectors in three dimensions may likewise be added by expressing the vec-
tors in terms of three components and adding the corresponding components.
Examples of this process of addition will be given after vector components are
discussed in Sec. 1.4.

The rule for the subtraction of vectors follows easily from that for addition,
for we may always express A — B as A + (—B); the sign, or direction, of the
second vector is reversed, and this vector is then added to the first by the rule
for vector addition.

Vectors may be multiplied by scalars. The magnitude of the vector changes,
but its direction does not when the scalar is positive, although it reverses direc-
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FIGURE 1.1

Two vectors may be added graphically either by drawing both vectors from a common origin and
completing the parallelogram or by beginning the second vector from the head of the first and completing
the triangle; either method is easily extended to three or more vectors.

tion when multiplied by a negative scalar. Multiplication of a vector by a scalar
also obeys the associative and distributive laws of algebra, leading to

r+s)A+B)=rA+B)+s(A+B)=rA+rB+sA+sB

Division of a vector by a scalar is merely multiplication by the reciprocal of
that scalar.

The multiplication of a vector by a vector is discussed in Secs. 1.6 and 1.7.

Two vectors are said to be equal if their difference is zero, or A = B if
A—-B=0.

In our use of vector fields we shall always add and subtract vectors which
are defined at the same point. For example, the toral magnetic field about a small
horseshoe magnet will be shown to be the sum of the fields produced by the earth
and the permanent magnet; the total field at any point is the sum of the indivi-
dual fields at that point.

If we are not considering a vector field, however, we may add or subtract
vectors which are not defined at the same point. For example, the sum of the
gravitational force acting on a 150-lbs (pound-force) man at the North Pole and
that acting on a 175-1b, man at the South Pole may be obtained by shifting each
force vector to the South Pole before addition. The resultant is a force of 251b,
directed toward the center of the earth at the South Pole; if we wanted to be
difficult, we could just as well describe the force as 251b, directed away from the
center of the earth (or “‘upward”) at the North Pole.”

1.3 THE CARTESIAN COORDINATE SYSTEM

In order to describe a vector accurately, some specific lengths, directions, angles,
projections, or components must be given. There are three simple methods of
doing this, and about eight or ten other methods which are useful in very special
cases. We are going to use only the three simple methods, and the simplest of
these is the cartesian, or rectangular, coordinate system.

2 A few students have argued that the force might be described at the equator as being in a “northerly”
direction. They are right, but enough is enough.
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In the cartesian coordinate system we set up three coordinate axes mutually
at right angles to each other, and call them the x, y, and z axes. It is customary to
choose a right-handed coordinate system, in which a rotation (through the smal-
ler angle) of the x axis into the y axis would cause a right-handed screw to
progress in the direction of the z axis. If the right hand is used, then the
thumb, forefinger, and middle finger may then be identified, respectively, as
the x, y, and z axes. Fig. 1.2a shows a right-handed cartesian coordinate system.

A point is located by giving its x, y, and z coordinates. These are, respec-
tively, the distances from the origin to the intersection of a perpendicular
dropped from the point to the x, y, and z axes. An alternative method of inter-
preting coordinate values, and a method corresponding to that which must be
used in all other coordinate systems, is to consider the point as being at the

FIGURE 1.2

(a) A right-handed cartesian coordinate system. If the curved fingers of the right hand indicate the
direction through which the x axis is turned into coincidence with the y axis, the thumb shows the direction
of the z axis. (b) The location of points P(1,2,3) and Q(2, -2, 1). (¢) The differential volume element in
cartesian coordinates; dx, dy, and dz are, in general, independent differentials.
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common intersection of three surfaces, the planes x = constant, y = constant,
and z = constant, the constants being the coordinate values of the point.

Fig. 1.2h shows the points P and Q whose coordinates are (1,2, 3) and
(2, =2, 1), respectively. Point P is therefore located at the common point of
intersection of the planes x =1, y = 2, and z = 3, while point Q is located at
the intersection of the planes x =2, y = -2, z = 1.

As we encounter other coordinate systems in Secs. 1.8 and 1.9, we should
expect points to be located at the common intersection of three surfaces, not
necessarily planes, but still mutually perpendicular at the point of intersection.

If we visualize three planes intersecting at the general point P, whose coor-
dinates are x, y, and z, we may increase each coordinate value by a differential
amount and obtain three slightly displaced planes intersecting at point P’, whose
coordinates are x + dx, y + dy, and z 4 dz. The six planes define a rectangular
parallelepiped whose volume is dv = dxdydz; the surfaces have differential areas
dS of dxdy, dydz, and dzdx. Finally, the distance dL from P to P’ is the diagonal

of the parallelepiped and has a length of \/ (dx)* + (dy)* + (dz)*. The volume
element is shown in Fig. 1.2¢; point P’ is indicated, but point P is located at
the only invisible corner.

All this is familiar from trigonometry or solid geometry and as yet involves
only scalar quantities. We shall begin to describe vectors in terms of a coordinate
system in the next section.

1.4 VECTOR COMPONENTS AND UNIT
VECTORS

To describe a vector in the cartesian coordinate system, let us first consider a
vector r extending outward from the origin. A logical way to identify this vector
is by giving the three component vectors, lying along the three coordinate axes,
whose vector sum must be the given vector. If the component vectors of the
vector r are X, y, and z, then r = x +y + z. The component vectors are shown in
Fig. 1.3a. Instead of one vector, we now have three, but this is a step forward,
because the three vectors are of a very simple nature; each is always directed
along one of the coordinate axes.

In other words, the component vectors have magnitudes which depend on
the given vector (such as r above), but they each have a known and constant
direction. This suggests the use of unit vectors having unit magnitude, by defini-
tion, and directed along the coordinate axes in the direction of the increasing
coordinate values. We shall reserve the symbol a for a unit vector and identify
the direction of the unit vector by an appropriate subscript. Thus a,, a,, and a.
are the unit vectors in the cartesian coordinate system.? They are directed along
the x, y, and z axes, respectively, as shown in Fig. 1.3b.

3The symbols i, j, and k are also commonly used for the unit vectors in cartesian coordinates.
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FIGURE 1.3

(a) The component vectors x, y, and z of vector r. (b) The unit vectors of the cartesian coordinate system
have unit magnitude and are directed toward increasing values of their respective variables. (¢) The vector
Rpp is equal to the vector difference rg —rp.

If the component vector y happens to be two units in magnitude and
directed toward increasing values of y, we should then write y = 2a,. A vector
rp pointing from the origin to point P(1, 2, 3) is written rp = a, + 2a, + 3a.. The
vector from P to Q may be obtained by applying the rule of vector addition. This
rule shows that the vector from the origin to P plus the vector from P to Q is
equal to the vector from the origin to Q. The desired vector from P(1, 2, 3) to
02, -2, 1) is therefore

Rpp =190 —1p=(2—Da, + (-2 —2)a, + (I — 3)a.
=a, —4a, —2a.

The vectors rp, rg, and Rpp are shown in Fig. 1.3c.
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This last vector does not extend outward from the origin, as did the vector r
we initially considered. However, we have already learned that vectors having the
same magnitude and pointing in the same direction are equal, so we see that to
help our visualization processes we are at liberty to slide any vector over to the
origin before determining its component vectors. Parallelism must, of course, be
maintained during the sliding process.

If we are discussing a force vector F, or indeed any vector other than a
displacement-type vector such as r, the problem arises of providing suitable
letters for the three component vectors. It would not do to call them x,y, and
z, for these are displacements, or directed distances, and are measured in meters
(abbreviated m) or some other unit of length. The problem is most often avoided
by using component scalars, simply called components, F\, F,, and F.. The com-
ponents are the signed magnitudes of the component vectors. We may then write
F = F.a, + Fya, + F.a.. The component vectors are Fya,, F,a,, and F.a..

Any vector B then may be described by B = B,a, + B,a, + B.a.. The mag-
nitude of B written |B| or simply B, is given by

B| = /B2 + B2 + B (1)

Each of the three coordinate systems we discuss will have its three funda-
mental and mutually perpendicular unit vectors which are used to resolve any
vector into its component vectors. However, unit vectors are not limited to this
application. It is often helpful to be able to write a unit vector having a specified
direction. This is simply done, for a unit vector in a given direction is merely a
vector in that direction divided by its magnitude. A unit vector in the r direction
is r/y/x? + »? + z2, and a unit vector in the direction of the vector B is

B B

—_——
/B2 + B2+ B2 Bl

)

ap =

||II»Example 1.1

Specify the unit vector extending from the origin toward the point G(2, —2, —1).

Solution. We first construct the vector extending from the origin to point G,
G =2a,—2a, —a.
We continue by finding the magnitude of G,

Gl = P + (=27 +(—1)* =3
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and finally expressing the desired unit vector as the quotient,

a G
‘7G|

A special identifying symbol is desirable for a unit vector so that its character is
immediately apparent. Symbols which have been used are ug, ag, 1, or even b. We shall
consistently use the lowercase a with an appropriate subscript.

[Note: Throughout the text, drill problems appear following sections in which a
new principle is introduced in order to allow students to test their understanding of the
basic fact itself. The problems are useful in gaining familiarization with new terms and
ideas and should all be worked. More general problems appear at the ends of the
chapters. The answers to the drill problems are given in the same order as the parts
of the problem.]

2a, —2a, —la. = 0.667a, — 0.667a, — 0.333a.

¢/ DLL Given points M(—1,2,1), N(3,—3,0), and P(=2, =3, —4), find: () Ryw: (b)
Ryv + Rugp; (¢) [ral; (d) app; (e) [2rp — 3ry].

Ans. 4a, — 5a, —a.; 3a, — 10a, — 6a.; 2.45; —0.1400a, — 0.700a, — 0.700a.; 15.56

1.5 THE VECTOR FIELD

We have already defined a vector field as a vector function of a position vector.
In general, the magnitude and direction of the function will change as we move
throughout the region, and the value of the vector function must be determined
using the coordinate values of the point in question. Since we have considered
only the cartesian coordinate system, we should expect the vector to be a func-
tion of the variables x, y, and z.

If we again represent the position vector as r, then a vector field G can be
expressed in functional notation as G(r); a scalar field 7T is written as 7(r).

If we inspect the velocity of the water in the ocean in some region near the
surface where tides and currents are important, we might decide to represent it by
a velocity vector which is in any direction, even up or down. If the z axis is taken
as upward, the x axis in a northerly direction, the y axis to the west, and the
origin at the surface, we have a right-handed coordinate system and may write
the velocity vector as v = v a, + v,a, + v.a., or v(r) = v.(r)a, + v,(r)a, + v-(r)a;
each of the components v, v,, and v- may be a function of the three variables
x, y, and z. If the problem is simplified by assuming that we are in some portion
of the Gulf Stream where the water is moving only to the north, then v,, and v.
are zero. Further simplifying assumptions might be made if the velocity falls off
with depth and changes very slowly as we move north, south, east, or west. A
suitable expression could be v = 2¢7/1%a . We have a velocity of 2m/s (meters
per second) at the surface and a velocity of 0.368 x 2, or 0.736 m/s, at a depth of
100m (z = —100), and the velocity continues to decrease with depth; in this
example the vector velocity has a constant direction.

While the example given above is fairly simple and only a rough approx-
imation to a physical situation, a more exact expression would be correspond-
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ingly more complex and difficult to interpret. We shall come across many fields
in our study of electricity and magnetism which are simpler than the velocity
example, an example in which only the component and one variable were
involved (the x component and the variable z). We shall also study more com-
plicated fields, and methods of interpreting these expressions physically will be
discussed then.

v/ DIL2 A vector field S is expressed in cartesian coordinates as S =
{125/[(x = D> + (» = 2> + (z + D*DH(x — Da, + (v — 2)a, + (z + Da.}. (a) Evaluate S
at P(2,4,3). (b) Determine a unit vector that gives the direction of S at P. (¢) Specify
the surface f(x, y, z) on which |S| = 1.

Ans. 5.95a, 4+ 11.90a, 4-23.8a.; 0.218a, 4 0.436a, 4- 0.873a_;
\/(x — 1)+ -2+ (E+1)* =125

1.6 THE DOT PRODUCT

We now consider the first of two types of vector multiplication. The second type
will be discussed in the following section.

Given two vectors A and B, the dot product, or scalar product, is defined as
the product of the magnitude of A, the magnitude of B, and the cosine of the
smaller angle between them,

A-B=|A||B|cosO,p 3)

The dot appears between the two vectors and should be made heavy for empha-
sis. The dot, or scalar, product is a scalar, as one of the names implies, and it
obeys the commutative law,

A-B=B-A (4)

for the sign of the angle does not affect the cosine term. The expression A - B is
read “A dot B.”

Perhaps the most common application of the dot product is in mechanics,
where a constant force F applied over a straight displacement L does an amount
of work FL cos#@, which is more easily written F - L. We might anticipate one of
the results of Chap. 4 by pointing out that if the force varies along the path,
integration is necessary to find the total work, and the result becomes

Work = JF-dL

Another example might be taken from magnetic fields, a subject about
which we shall have a lot more to say later. The total flux @ crossing a surface
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of area S is given by BS if the magnetic flux density B is perpendicular to the
surface and uniform over it. We define a vector surface S as having the usual area
for its magnitude and having a direction normal to the surface (avoiding for the
moment the problem of which of the two possible normals to take). The flux
crossing the surface is then B+ S. This expression is valid for any direction of the
uniform magnetic flux density. However, if the flux density is not constant over
the surface, the total flux is & = [ B-dS. Integrals of this general form appear in
Chap. 3 when we study electric flux density.

Finding the angle between two vectors in three-dimensional space is often a
job we would prefer to avoid, and for that reason the definition of the dot
product is usually not used in its basic form. A more helpful result is obtained
by considering two vectors whose cartesian components are given, such as
A=A4.a.+A4a,+ A.a. and B= B.a, + Bya, + B.a.. The dot product also
obeys the distributive law, and, therefore, A -B yields the sum of nine scalar
terms, each involving the dot product of two unit vectors. Since the angle
between two different unit vectors of the cartesian coordinate system is 90°,
we then have

a,-a,=2a,-a, =2,+2,=2a,-2,=2,-2, =2.-a, =0

The remaining three terms involve the dot product of a unit vector with itself,
which is unity, giving finally

A-B=AB, +A,B, + A.B. (5)

which is an expression involving no angles.
A vector dotted with itself yields the magnitude squared, or

A-A=A4"=|A) (6)

and any unit vector dotted with itself is unity,
Ay-ay = 1

One of the most important applications of the dot product is that of finding
the component of a vector in a given direction. Referring to Fig. 1.4a, we can
obtain the component (scalar) of B in the direction specified by the unit vector a
as

B-.a = |B||a|cosfp, = |B|cosbp,
The sign of the component is positive if 0 < 0, < 90° and negative whenever
90° < Op, < 180°.
In order to obtain the component vector of B in the direction of a, we

simply multiply the component (scalar) by a, as illustrated by Fig. 1.4b. For
example, the component of B in the direction of a, is B-a, = By, and the
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FIGURE 1.4
(a) The scalar component of B in the direction of the unit vector a is B - a. (b) The vector component of B
in the direction of the unit vector a is (B - a)a.

component vector is Bya,, or (B-a,)a,. Hence, the problem of finding the com-
ponent of a vector in any desired direction becomes the problem of finding a unit
vector in that direction, and that we can do.

The geometrical term projection is also used with the dot product. Thus,
B - a is the projection of B in the a direction.

IIII*Example 1.2

In order to illustrate these definitions and operations, let us consider the vector field
G = ya, — 2.5xa, + 3a. and the point Q(4,5,2). We wish to find: G at Q; the scalar
component of G at Q in the direction of ay = %(Za,\- +a, — 2a.); the vector component
of G at Q in the direction of ay; and finally, the angle 65, between G(rp) and ay.

Solution. Substituting the coordinates of point Q into the expression for G, we have
G(rp) = 5a, — 10a, + 3a.
Next we find the scalar component. Using the dot product, we have
G-ay = (5a, — 10a, + 3a.)- {(2a, +a, —2a.) = (10— 10 — 6) = -2

The vector component is obtained by multiplying the scalar component by the unit
vector in the direction of ay,

(G-ay)ay = —(2)%(2ax +a, —2a.) = —1.333a, — 0.667a, + 1.333a.
The angle between G(rp) and ay is found from

G-ay = |G|cosbg,

—2=+/25+100 4+ 9cosbg,

and

-2
06a = cos I ——— = 99.9°

V134
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¢/ DL3. The three vertices of a triangle are located at A4(6, —1,2), B(-2,3, —4), and
C(—3,1,5). Find: (a) R4p; (b) Ryc; (¢) the angle 6p4c at vertex A; (d) the (vector)
projection of R4z on Ryc.

Ans. —8a, +4a, — 6a.; —9a, — 2a, + 3a.; 53.6°; —5.94a, + 1.319a, 4 1.979a.

1.7 THE CROSS PRODUCT

Given two vectors A and B, we shall now define the cross product, or vector
product, of A and B, written with a cross between the two vectors as A x B and
read ““A cross B.”” The cross product A x B is a vector; the magnitude of A x Bis
equal to the product of the magnitudes of A, B, and the sine of the smaller angle
between A and B; the direction of A x B is perpendicular to the plane containing
A and B and is along that one of the two possible perpendiculars which is in the
direction of advance of a right-handed screw as A is turned into B. This direction
is illustrated in Fig. 1.5. Remember that either vector may be moved about at
will, maintaining its direction constant, until the two vectors have a “‘common
origin.” This determines the plane containing both. However, in most of our
applications we shall be concerned with vectors defined at the same point.
As an equation we can write

A x B = ay|A| |B|sin 6.z (7)

where an additional statement, such as that given above, is still required to
explain the direction of the unit vector ay. The subscript stands for “normal.”

Reversing the order of the vectors A and B results in a unit vector in the
opposite direction, and we see that the cross product is not commutative, for
B x A = —(A x B). If the definition of the cross product is applied to the unit

FIGURE 1.5
The direction of A x B is in the direction of advance
of a right-handed screw as A is turned into B.

4| p | eTextMainMenu | Textbook Table of Contents

13



14

ENGINEERING ELECTROMAGNETICS

vectors a, and a,, we find a, x a, = a., for each vector has unit magnitude, the
two vectors are perpendicular, and the rotation of a, into a, indicates the posi-
tive z direction by the definition of a right-handed coordinate system. In a similar
way a, X a. = a,, and a. x a, = a,. Note the alphabetic symmetry. As long as
the three vectors ay, a,, and a. are written in order (and assuming that a, follows
a_, like three elephants in a circle holding tails, so that we could also write a,, a.,
a, or a, a,, a,), then the cross and equal sign may be placed in either of the two
vacant spaces. As a matter of fact, it is now simpler to define a right-handed
cartesian coordinate system by saying that a, x a, = a..

A simple example of the use of the cross product may be taken from
geometry or trigonometry. To find the area of a parallelogram, the product of
the lengths of two adjacent sides is multiplied by the sine of the angle between
them. Using vector notation for the two sides, we then may express the (scalar)
area as the magnitude of A x B, or |A x Bj.

The cross product may be used to replace the right-hand rule familiar to all
electrical engineers. Consider the force on a straight conductor of length L,
where the direction assigned to L corresponds to the direction of the steady
current /, and a uniform magnetic field of flux density B is present. Using vector
notation, we may write the result neatly as F = /L x B. This relationship will be
obtained later in Chap. 9.

The evaluation of a cross product by means of its definition turns out to be
more work than the evaluation of the dot product from its definition, for not
only must we find the angle between the vectors, but we must find an expression
for the unit vector ay. This work may be avoided by using cartesian components
for the two vectors A and B and expanding the cross product as a sum of nine
simpler cross products, each involving two unit vectors,

AxB=A4Ba,xa,+ABja, xa,+A.B.a, xa.
+ A,B,a, xa,+ A,B,a, xa, + A,B.a, x a;
+ A:Bea. xa,+ A.Bja. xa, + A.B.a; x a;
We have already found that a, xa, =a., a, xa. =a,, and a. x a, = a,.

The three remaining terms are zero, for the cross product of any vector with itself
is zero, since the included angle is zero. These results may be combined to give

A x B =(4,B. — A-B,)a, + (A-B, — A,B-)a, + (4. B, — A,BJa.  (8)

or written as a determinant in a more easily remembered form,

a, a, a.
AxB=|d, A, A. 9)
B. B, B

Thus, if A =2a, —3a, +a. and B= —4a, — 2a, + 5a., we have
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a, a, a.
AxB=|2 -3 1
-4 -2 5

= [(=3)(5) = (1(=2D)]ax — [(2)(5) — (D)(=D]a, + [(2)(=2) — (=3)(—4)]a:
= —13a, — 14a, — 16a.

V D1.4. The three vertices of a triangle are located at A(6, —1,2), B(—2,3,—4) and
C(—3,1,5). Find: (a) R4p x Ry¢; (b) the area of the triangle; (¢) a unit vector perpen-
dicular to the plane in which the triangle is located.

Ans. 24a, + 78a, + 20a.; 42.0; 0.286a, 4 0.928a, + 0.238a.

1.8 OTHER COORDINATE SYSTEMS:
CIRCULAR CYLINDRICAL COORDINATES

The cartesian coordinate system is generally the one in which students prefer to
work every problem. This often means a lot more work for the student, because
many problems possess a type of symmetry which pleads for a more logical
treatment. It is easier to do now, once and for all, the work required to become
familiar with cylindrical and spherical coordinates, instead of applying an equal
or greater effort to every problem involving cylindrical or spherical symmetry
later. With this future saving of labor in mind, we shall take a careful and
unhurried look at cylindrical and spherical coordinates.

The circular cylindrical coordinate system is the three-dimensional version
of the polar coordinates of analytic geometry. In the two-dimensional polar
coordinates, a point was located in a plane by giving its distance p from the
origin, and the angle ¢ between the line from the point to the origin and an
arbitrary radial line, taken as ¢ = 0.* A three-dimensional coordinate system,
circular cylindrical coordinates, is obtained by also specifying the distance z of
the point from an arbitrary z = 0 reference plane which is perpendicular to the
line p = 0. For simplicity, we usually refer to circular cylindrical coordinates
simply as cylindrical coordinates. This will not cause any confusion in reading
this book, but it is only fair to point out that there are such systems as elliptic
cylindrical coordinates, hyperbolic cylindrical coordinates, parabolic cylindrical
coordinates, and others.

We no longer set up three axes as in cartesian coordinates, but must instead
consider any point as the intersection of three mutually perpendicular surfaces.
These surfaces are a circular cylinder (o = constant), a plane (¢ = constant), and

4 The two variables of polar coordinates are commonly called » and 6. With three coordinates, however, it
is more common to use p for the radius variable of cylindrical coordinates and r for the (different) radius
variable of spherical coordinates. Also, the angle variable of cylindrical coordinates is customarily called ¢
because everyone uses 6 for a different angle in spherical coordinates. The angle ¢ is common to both
cylindrical and spherical coordinates. See?
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another plane (z = constant). This corresponds to the location of a point in a
cartesian coordinate system by the intersection of three planes (x = constant, y =
constant, and z = constant). The three surfaces of circular cylindrical coordi-
nates are shown in Fig. 1.6a. Note that three such surfaces may be passed
through any point, unless it lies on the z axis, in which case one plane suffices.

Three unit vectors must also be defined, but we may no longer direct them
along the “coordinate axes,” for such axes exist only in cartesian coordinates.
Instead, we take a broader view of the unit vectors in cartesian coordinates and
realize that they are directed toward increasing coordinate values and are per-
pendicular to the surface on which that coordinate value is constant (i.e., the unit
vector a, is normal to the plane x = constant and points toward larger values of
x). In a corresponding way we may now define three unit vectors in cylindrical
coordinates, a,, a5, and a..

FIGURE 1.6

(aa) The three mutually perpendicular surfaces of the circular cylindrical coordinate system. (b) The three
unit vectors of the circular cylindrical coordinate system. (¢) The differential volume unit in the circular
cylindrical coordinate system; dp, pd¢, and dz are all elements of length.
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The unit vector a, at a point P(pi, ¢1,z1) is directed radially outward,
normal to the cylindrical surface p = p;. It lies in the planes ¢ = ¢; and
z = z;. The unit vector ay4 is normal to the plane ¢ = ¢;, points in the direction
of increasing ¢, lies in the plane z = z|, and is tangent to the cylindrical surface
p = p1. The unit vector a, is the same as the unit vector a, of the cartesian
coordinate system. Fig. 1.6h shows the three vectors in cylindrical coordinates.

In cartesian coordinates, the unit vectors are not functions of the coordi-
nates. Two of the unit vectors in cylindrical coordinates, a, and a4, however, do
vary with the coordinate ¢, since their directions change. In integration or dif-
ferentiation with respect to ¢, then, a, and a, must not be treated as constants.

The unit vectors are again mutually perpendicular, for each is normal to
one of the three mutually perpendicular surfaces, and we may define a right-
handed cylindrical coordinate system as one in which a, x as = a., or (for those
who have flexible fingers) as one in which the thumb, forefinger, and middle
finger point in the direction of increasing p, ¢, and z, respectively.

A differential volume element in cylindrical coordinates may be obtained
by increasing p, ¢, and z by the differential increments dp, d¢, and dz. The two
cylinders of radius p and p + dp, the two radial planes at angles ¢ and ¢ + d¢,
and the two “horizontal” planes at “‘elevations” z and z 4+ dz now enclose a small
volume, as shown in Fig. 1.6¢, having the shape of a truncated wedge. As the
volume element becomes very small, its shape approaches that of a rectangular
parallelepiped having sides of length dp, pd¢ and dz. Note that dp and dz are
dimensionally lengths, but d¢ is not; pd¢ is the length. The surfaces have areas of
pdpdo, dp dz, and pd¢dz, and the volume becomes pdpde dz.

The variables of the rectangular and cylindrical coordinate systems are
easily related to each other. With reference to Fig. 1.7, we see that

X = pcos¢
y = psing (10)
zZ =7z

FIGURE 1.7

The relationship between the cartesian variables x, y, z
and the cylindrical coordinate variables p, ¢, z. There
is no change in the variable z between the two systems.
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From the other viewpoint, we may express the cylindrical variables in terms of
x,y, and z:

p=vx*+y* (p=0)
¢:tan_1£ (11
=7z

We shall consider the variable p to be positive or zero, thus using only the
positive sign for the radical in (11). The proper value of the angle ¢ is determined
by inspecting the signs of x and y. Thus, if x = —3 and y = 4, we find that the
point lies in the second quadrant so that p =5 and ¢ = 126.9°. For x = 3 and
y = —4, we have ¢ = —53.1° or 306.9°, whichever is more convenient.

Using (10) or (11), scalar functions given in one coordinate system are
easily transformed into the other system.

A vector function in one coordinate system, however, requires two steps in
order to transform it to another coordinate system, because a different set of
component vectors is generally required. That is, we may be given a cartesian
vector

A=A4.a,+A4a,+ A.a.

where each component is given as a function of x, y, and z, and we need a vector
in cylindrical coordinates

A=Aya,+ Apas + A.a.

where each component is given as a function of p, ¢, and z.

To find any desired component of a vector, we recall from the discussion of
the dot product that a component in a desired direction may be obtained by
taking the dot product of the vector and a unit vector in the desired direction.
Hence,

A,=A-a, and Ay =A-ay

Expanding these dot products, we have

A, =(Aa,+Aa, +A.a.)-a,=A.a.-a,+4,a,-a, (12)

Ay =(Avac+Aya, + A.a.)-a, = Aa,-a5+ A,a, -2, (13)
and

A.=(Aac+A4a, +A4.a.)-a. =A.a.-a. = A. (14)

since a.-a, and a. - a, are zero.

In order to complete the transformation of the components, it is necessary
to know the dot products a,-a,, a,-a,, a,-ag, and a, -a,. Applying the defini-
tion of the dot product, we see that since we are concerned with unit vectors, the
result is merely the cosine of the angle between the two unit vectors in question.
Referring to Fig. 1.7 and thinking mightily, we identify the angle between a, and
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TABLE 1.1
Dot products of unit vectors in cylindrical and cartesian

coordinate systems

a, a, a,
a,- cos ¢ —sin¢ 0
a,- sin ¢ cos ¢ 0
a. 0 0 1

a, as ¢, and thus a, -a, = cos ¢, but the angle between a, and a, is 90° — ¢, and
a,-a, = cos (90° — ¢) = sin ¢. The remaining dot products of the unit vectors are
found in a similar manner, and the results are tabulated as functions of ¢ in
Table 1.1

Transforming vectors from cartesian to cylindrical coordinates or vice versa

is therefore accomplished by using (10) or (11) to change variables, and by using
the dot products of the unit vectors given in Table 1.1 to change components.
The two steps may be taken in either order.

IIII»Example 1.3

Transform the vector B = ya, — xa, + za. into cylindrical coordinates.

Solution. The new components are
B,=B-a, =y(a,-a,) —x(a,-a,)
= ycos¢ — xsing = psingcosp — pcospsing =0
By =B-a; =y(a,-a,) — x(a, - ay)
= —ysing — xcos¢p = —psin’ ¢ — pcos’p = —p
Thus,
B = —pay + za.

D1.5. (a) Give the cartesian coordinates of the point C(p = 4.4, ¢ = —115°, z = 2). (b)
Give the cylindrical coordinates of the point D(x = —3.1, y = 2.6, z = —3). (¢) Specify
the distance from C to D.

Ans. C(x = —1.860, y = —3.99, z = 2); D(p = 4.05, ¢ = 140.0°, z = —3); 8.36

D1.6. Transform to cylindrical coordinates: (a) F = 10a, —8a, +6a. at point
P(10, =8, 6); (b)) G = (2x +y)a, — (y — 4x)a, at point Q(p, ¢, z). (¢) Give the cartesian
components of the vector H = 20a, — 10a, + 3a. at P(x =5,y =2,z = —1).

Ans. 12.81a, + 6a.; (2pcos® ¢ — psin® ¢ + Spsin ¢ cos p)a, + (4pcos® ¢ — psin’ p—
3psingcosg)ay; H, =223, H,=—1857, H. =3
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1.9 THE SPHERICAL COORDINATE SYSTEM

We have no two-dimensional coordinate system to help us understand the three-
dimensional spherical coordinate system, as we have for the circular cylindrical
coordinate system. In certain respects we can draw on our knowledge of the
latitude-and-longitude system of locating a place on the surface of the earth,
but usually we consider only points on the surface and not those below or above
ground.

Let us start by building a spherical coordinate system on the three cartesian
axes (Fig. 1.8a). We first define the distance from the origin to any point as r.
The surface r = constant is a sphere.

FIGURE 1.8

(a) The three spherical coordinates. (b) The three mutually perpendicular surfaces of the spherical coordi-
nate system. (c¢) The three unit vectors of spherical coordinates: a, x ag = ay. (d) The differential volume
element in the spherical coordinate system.
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The second coordinate is an angle 6 between the z axis and the line drawn
from the origin to the point in question. The surface 6 = constant is a cone, and
the two surfaces, cone and sphere, are everywhere perpendicular along their
intersection, which is a circle of radius rsin 6. The coordinate 6 corresponds to
latitude, except that latitude is measured from the equator and 6 is measured
from the “North Pole.”

The third coordinate ¢ is also an angle and is exactly the same as the angle
¢ of cylindrical coordinates. It is the angle between the x axis and the projection
in the z = 0 plane of the line drawn from the origin to the point. It corresponds
to the angle of longitude, but the angle ¢ increases to the “‘east.” The surface ¢ =
constant is a plane passing through the 6 = 0 line (or the z axis).

We should again consider any point as the intersection of three mutually
perpendicular surfaces—a sphere, a cone, and a plane—each oriented in the
manner described above. The three surfaces are shown in Fig. 1.85.

Three unit vectors may again be defined at any point. Each unit vector is
perpendicular to one of the three mutually perpendicular surfaces and oriented in
that direction in which the coordinate increases. The unit vector a, is directed
radially outward, normal to the sphere r = constant, and lies in the cone 6 =
constant and the plane ¢ = constant. The unit vector ay is normal to the conical
surface, lies in the plane, and is tangent to the sphere. It is directed along a line of
“longitude” and points “south.” The third unit vector a, is the same as in
cylindrical coordinates, being normal to the plane and tangent to both the
cone and sphere. It is directed to the “east.”

The three unit vectors are shown in Fig. 1.8¢. They are, of course, mutually
perpendicular, and a right-handed coordinate system is defined by causing
a, X ag = a5. Our system is right-handed, as an inspection of Fig. 1.8¢ will
show, on application of the definition of the cross product. The right-hand
rule serves to identify the thumb, forefinger, and middle finger with the direction
of increasing r, 6, and ¢, respectively. (Note that the identification in cylindrical
coordinates was with p, ¢, and z, and in cartesian coordinates with x, y, and z). A
differential volume element may be constructed in spherical coordinates by
increasing r, 6, and ¢ by dr, df, and d¢, as shown in Fig. 1.84. The distance
between the two spherical surfaces of radius r and r+ dr is dr; the distance
between the two cones having generating angles of 6 and 6 + d6 is rd6; and
the distance between the two radial planes at angles ¢ and ¢ + d¢ is found to
be rsinOd¢, after a few moments of trigonometric thought. The surfaces have
areas of rdrd@, rsin 0 dr d¢p, and r*sin 0 d0 d¢, and the volume is > sin 0 dr d6 d¢.

The transformation of scalars from the cartesian to the spherical coordinate
system is easily made by using Fig. 1.8a to relate the two sets of variables:

X =rsinfcos¢
y =rsinfsing (15)

z=rcosf
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TABLE 1.2
Dot products of unit vectors in spherical and cartesian

coordinate systems

a, Ay ap
a,- sin 6 cos ¢ cos 6 cos ¢ —sing¢
a,- sin 0'sin ¢ cosfsin ¢ cos ¢
a- cost —sin6 0

The transformation in the reverse direction is achieved with the help of

r=+/x*+y?+ 22 (r>0)

_ -z o o
6 = cos e (0° <06 < 180°% (16)
¢=tan_1)—;
X

The radius variable r is nonnegative, and 6 is restricted to the range from 0° to
180°, inclusive. The angles are placed in the proper quadrants by inspecting the
signs of x, y, and z.

The transformation of vectors requires the determination of the products of
the unit vectors in cartesian and spherical coordinates. We work out these prod-
ucts from Fig. 1.8¢ and a pinch of trigonometry. Since the dot product of any
spherical unit vector with any cartesian unit vector is the component of the
spherical vector in the direction of the cartesian vector, the dot products with
a. are found to be

a.-a, = cosb
a.-ay = —sinf
a.-a,=0
The dot products involving a, and a, require first the projection of the
spherical unit vector on the xy plane and then the projection onto the desired
axis. For example, a, - a, is obtained by projecting a, onto the xy plane, giving

sin#, and then projecting sin 6 on the x axis, which yields sin 6 cos ¢. The other
dot products are found in a like manner, and all are shown in Table 1.2.

IIII»Example 1.4

We illustrate this transformation procedure by transforming the vector field
G = (xz/y)a, into spherical components and variables.

Solution. We find the three spherical components by dotting G with the appropriate
unit vectors, and we change variables during the procedure:
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Xz Xz .
G, =G-a,=—a,-a, =—sinfcos¢
y Y
. cos? ¢
= rsinfcosf—
sin ¢
Xz Xz
Gy =G-a9g=—a,-a9g =—Ccos6cos ¢
y y
2
cos” ¢
= rcos’ 60—
n ¢
Xz

= —rcosfcos¢

Collecting these results, we have

G =rcosfcos¢g(sinfcotpa, + cosbcotpag — ay)

Appendix A describes the general curvilinear coordinate system of which
the cartesian, circular cylindrical, and spherical coordinate systems are special
cases. The first section of this appendix could well be scanned now.

‘/ D1.7. Given the two points, C(—3,2,1) and D(r = 5,0 = 20°, ¢ = —70°), find: (a) the
spherical coordinates of C; (b) the cartesian coordinates of D; (¢) the distance from C to
D.

Ans. C(r = 3.74, 0 = 74.5°, ¢ = 146.3°); D(x = 0.585, y = —1.607, z = 4.70); 6.29

G/ D1.8. Transform the following vectors to spherical coordinates at the points given: (a)
10a, at P(x=-=3, y =2, z=4); (b) 10a, at Q(p=15,¢=30°, z=4); (c) 10a. at
M(r=4,0=110°, ¢ = 120°).

Ans. —5.57a, — 6.18a9 — 5.55a4; 3.90a, + 3.12a, + 8.66ay; —3.42a, — 9.40a,

SUGGESTED REFERENCES
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Jovanovich, Publishers, Orlando, 1984. Vector algebra and cylindrical and
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chap. 20.

2. Spiegel, M. R.: “Vector Analysis,” Schaum Outline Series, McGraw-Hill
Book Company, New York, 1959. A large number of examples and
problems with answers are provided in this concise, inexpensive member
of an outline series.

3. Swokowski, E. W.: “Calculus with Analytic Geometry,” 3d ed., Prindle,
Weber, & Schmidt, Boston, 1984. Vector algebra and the cylindrical and
spherical coordinate systems are discussed in chap. 14, and vector calculus
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4. Thomas, G. B., Jr., and R. L. Finney: “Calculus and Analytic Geometry,”
6th ed., Addison-Wesley Publishing Company, Reading, Mass., 1984. Vector
algebra and the three coordinate systems we use are discussed in chap. 13.
Other vector operations are discussed in chaps. 15 and 17.

PROBLEMS

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

Given the vectors M = —10a, +4a, —8a. and N = 8a, + 7a, — 2a_,
find: (a) a unit vector in the direction of —M + 2N; (b) the magnitude
of 5a, + N — 3M; (¢) [M||2N|(M + N).

Given three points, 4(4, 3, 2), B(—2,0,5), and C(7, =2, 1): (a) specify the
vector A extending from the origin to point A4; (b) give a unit vector
extending from the origin toward the midpoint of line 4B; (c) calculate
the length of the perimeter of triangle ABC.

The vector from the origin to point 4 is given as 6a, — 2a, — 4a., and the
unit vector directed from the origin toward point Bis (3, —2,1). If points

A and B are 10 units apart, find the coordinates of point B.

Given points A(8, —5, 4) and B(-2, 3, 2), find: (@) the distance from 4 to
B; (b) a unit vector directed from A towards B; (¢) a unit vector directed
from the origin toward the midpoint of the line AB; (d) the coordinates
of the point on the line connecting 4 to B at which the line intersects the
plane z = 3.

A vector field is specified as G = 24xya, + 12(x* + 2)a, + 18z%a.. Given
two points, P(1,2, —1) and Q(-2, 1, 3), find: («) G at P; (b) a unit vector
in the direction of G at Q; (¢) a unit vector directed from Q toward P; (d)
the equation of the surface on which |G| = 60.

For the G field given in Prob. 1.5 above, make sketches of G G,, G- and
|G| along the line y=1,z=1, for 0 < x <2.

Given the vector field E = 4zy?cos2xa, + 2zysin 2xa, + y?sin 2xa.,
find, for the region |x|, |y|, and |z] < 2: (a) the surfaces on which
E, = 0; (b) the region in which E, = E.; (c) the region for which E = 0.
Two vector fields are F = —10a, 4 20x(y —1)a, and G = 2x%ya,—
4a, + za.. For the point P(2, 3, —4), find: (a) [F|; (b) |G[; (c) a unit vector
in the direction of F — G; (d) a unit vector in the direction of F 4+ G.

25
A field is given as G = 162—4—2(an + ya,). Find: (a) a unit vector in the
direction of G at P(3, 4, —2); (b) the angle between G and a, at P; (¢) the

value of the double integral ﬁ:o Lzzo G -dxdza, on the plane y =7.
Use the definition of the dot product to find the interior angles at 4 and
B of the triangle defined by the three points: 4A(1, 3, —2), B(—2, 4, 5), and
C(0, =2, 1).

Given the points M(0.1, —0.2, —0.1), N(—0.2, 0.1, 0.3), and P(0.4,0, 0.1),
find: (a) the vector Ry y; (b) the dot product Ry, - Ryp; (¢) the scalar
projection of R,y on Ryp; (d) the angle between R,y and Ryyp.
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1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23
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Given points A(10, 12, —6), B(16,8, =2), C(8,1,4), and D(-2, -5, 8),
determine: (a) the vector projection of Rz + Rpc on R p; (b) the vector
projection of R, g + Rpc on Rpc; (¢) the angle between Rp, and Rpc.
(a) Find the vector component of F = 10a, — 6a, + 5a. that is parallel to
G =0.1a, +0.2a, 4 0.3a.. (b) Find the vector component of F that is
perpendicular to G. (¢) Find the vector component of G that is perpen-
dicular to F.

The three vertices of a regular tetrahedron are located at O(0, 0, 0),
A(0,1,0), B(0.54/3,0.5,0), and C(+/3/6, 0.5, v/2/3). (a) Find a unit vec-
tor perpendicular (outward) to face ABC:; (b) Find the area of face ABC.
Three vectors extending from the origin are given as r; =
7a, +3a, —2a., 1, =-2a,+7a,—3a,, and r3;=2a,—2a,+ 3a..
Find: (a) a unit vector perpendicular to both r; and r;; (b) a unit vector
perpendicular to the vectors r; —r, and r, —r3; (¢) the area of the tri-
angle defined by r; and ry; (d) the area of the triangle defined by the
heads of r, ry, and rs.

Describe the surface defined by the equation: (a) r-a, =2, where
r=xa,+ya, +za; (b) [r xa,| =2.

Point 4(—4,2,5) and the two vectors, R,y = 20a, 4 18a, — 10a. and
R,y = —10a, 4 8a, + 15a., define a triangle. (a) Find a unit vector per-
pendicular to the triangle. (b) Find a unit vector in the plane of the
triangle and perpendicular to R,y. (¢) Find a unit vector in the plane
of the triangle that bisects the interior angle at A.

Given points A(p =5, ¢ =70°, z=—-3)and B(p =2, ¢ = =30°, z=1),
find: (a) a unit vector in cartesian coordinates at A directed toward B; (b)
a unit vector in cylindrical coordinates at 4 directed toward B; (¢) a unit
vector in cylindrical coordinates at B directed toward A.

(a) Express the vector field D = (x? + %)~ (xa, + ya,) in cylindrical
components and cylindrical variables. (b) Evaluate D at the point
where p = 2, ¢ = 0.27 (rad), and z = 5. Express the result in both cylind-
rical and cartesian components.

Express in cartesian components: (@) the vector at A(p =4, ¢ = 40°,
z = —2) that extends to B(p =5, ¢ = —110°, z=2); (b) a unit vector
at B directed toward A; (¢) a unit vector at B directed toward the origin.
Express in cylindrical components: (a) the vector from C(3,2,—7) to
D(—1, —4,2); (b) a unit vector at D directed toward C; (¢) a unit vector
at D directed toward the origin. 40

A field is given in cylindrical coordinates as F = [m—l- 3(cos ¢+

sin ¢)] a, + 3(cos ¢ — sing)a, — 2a.. Prepare simple sketches of |F|: (a)

vs ¢ with p = 3; (b) vs p with ¢ = 0; (¢) vs p with ¢ = 45°.

The surfaces p = 3 and 5, ¢ = 100° and 130°, and z = 3 and 4.5 identify a
closed surface. (a) Find the volume enclosed. (b) Find the total area of
the enclosing surface. (¢) Find the total length of the twelve edges of the
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1.24

1.25

1.26

1.28

1.29

1.30

surface. (d) Find the length of the longest straight line that lies entirely
within the volume.

At point P(-3, —4,5), express that vector that extends from P to
0(2,0,—1) in: (a) rectangular coordinates; (b) cylindrical coordinates;
(c¢) spherical coordinates. (d) Show that each of these vectors has the
same magnitude.

Let E= lz cos¢a, + Sl.ﬂbag/,). Given point P(r=0.8, 6=30°
r sinf

¢ = 45°), determine: («) E at P; (b) |E| at P; (¢) a unit vector in the

direction of E at P.

(a) Determine an expression for a, in spherical coordinates at P(r = 4,

0 =0.2m, ¢ = 0.87). (b) Express a, in cartesian components at P.

The surfaces r =2 and 4, 6 = 30° and 50°, and ¢ = 20° and 60° identify a

closed surface. (¢) Find the enclosed volume. (b) Find the total area of

the enclosing surface. (¢) Find the total length of the twelve edges of the

surface. (d) Find the length of the longest straight line that lies entirely

within the volume.

(a) Determine the cartesian components of the vector from A(r =5,

6 =110°, ¢ = 200°) to B(r =7, 8 = 30°, ¢ = 70°). (b) Find the spherical

components of the vector at P(2, —3, 4) extending to Q(-3, 2, 5). (¢) If

D = 5a, — 3a, + 4a,, find D-a, at M(1,2,3).

Express the unit vector a, in spherical components at the point: (a) r = 2,

0=1rad, ¢ =0.8rad; (b)) x=3,y=2,z=—1;(c) p=2.5, ¢ =0.7rad,

z=1.5.

Given A(r =20, 6 = 30°, ¢ =45°) and B(r =30, 6 = 115°, ¢ = 160°),

find: (a) |R4pl; (b) |IR4c|, given C(r = 20, 6 = 90°, ¢ = 45°); (c) the dis-

tance from 4 to C on a great circle path.
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