ECOLE PREPARATOIRE EN SCIENCES ET TECHNIQUES D'ORAN EPSTO

Année universitaire : 2011/2012 Module : Chimie Niveau : 1ère année

STRUCTURE DE LA MATIERE

Les modèles classiques de l'atome Fiche de TD N° 4

Exercice 1:

* Compléter les réactions de désintégrations suivantes en donnant le type de réactions.

- a) ${}_{1}^{3}H \rightarrow X + \beta^{-}$; b) ${}_{84}^{210}Po \rightarrow {}_{82}^{206}pb + X$
- c) ${}_{16}^{35}S \rightarrow {}_{17}^{35}Cl + X$; c) ${}_{1}^{1}H + X \rightarrow {}_{2}^{4}He + \gamma$
- ** La désintégration du ³⁵S conduit à la formation du ³⁵Cl sachant que la masse soufre radioactif (³⁵S) de départ est de 1g et sa période égale à 88 jours.
 - a- Calculer la masse du soufre non désintégrée après 176 jours.
 - b- Quel est le temps nécessaire pour que 99% de cet élément se désintègrent.

Exercice 2:

Un noyau radioactif de Radon $^{222}_{86}Rn$ se désintègre en émettant une particule α . On dispose d'un échantillon de masse m=1g de cet isotope. La période du $^{222}_{86}Rn$ est T=3,8 jours.

- 1- Ecrire l'équation de désintégration du $^{222}_{86}Rn$.
- 2- Calculer la constante de désintégration radioactive du $^{222}_{86}Rn$.
- 3- Combien ya-t-il de noyaux radioactifs présents dans l'échantillon considère ?
- 4- Quelle est l'activité de cet échantillon? Quelle sera-t-elle au bout de 15 jours ?
- 5- Calculer le temps nécessaire pour que l'activité diminue à 1/8 de sa valeur initiale.

Exercice 3: (Datation au carbone 14)

Au cours d'une fouille archéologique, on a découvert une statuette en bois dont on cherche à évaluer l'âge. Pour cela on utilise la méthode de datation au carbone 14.

Le noyau de carbone 14 est radioactif $\mathbf{\beta}^{-}$ et donne un noyau d'azote en se désintégrant avec un temps de demi-vie =5730 ans.

- 1°/ Ecrire l'équation de désintégration du carbone 14.
- 2°/ Déterminer la constante radioactive du carbone 14.
- **3**°/ l'analyse d'un prélèvement de masse m=1.00g de la statuette montre qu'ellecontient10% en masse de carbone, cet échantillon présente une activité A= 1,5.10⁻³ d.p.s

Evaluer le nombre de noyau du carbone 14 présents dans le prélèvement lors de la mort du bois qui a servi à confectionner la statuette.

4°/ Déterminer l'activité **A**∘ de cet échantillon au moment de la mort du bois.

5°/ En déduire l'âge approximatif de la statuette.

Donnée : $1an = 3.16.10^7 s$

Exercice 4: (Réaction de fission nucléaire)

Parmi les diverses réactions de fission de l'Uranium 235 bombardé par des neutrons, On considère la réaction suivante : ${}^{235}_{92}U + {}^{1}_{0}n \longrightarrow {}^{139}_{X}Xe + {}^{94}_{38}Sr + y_{0}^{1}n$

 1° /Compléter la réaction en calculant x et y.

2°/Calculer en MeV, l'énergie libérée par la fission d'un noyau d'Uranium 235 suivant cette-réaction.

3°/Calculer le nombre de fissions nécessaires pour libérer1 joule. **4**°/Calculer l'énergie libérée par la fission de tous les noyaux contenus dans1gd' Uranium.

Données

$$^{235}_{92}U = 235.06024$$
uma... $^{146}_{57}Xe = 138.9156$ 6uma... $^{94}_{38}Sr = 93.9156$ 6uma... $^{1}_{0}n = 1.00866$ 5uma

 $C\left(c\acute{e}l\acute{e}rit\acute{e}\ de\ la\ lumi\`{e}re\right)=3.10^{8}\ m/s \quad ; \quad 1eV=1.602.10^{-19} joule.$

Exercice 5:

Au moment de la fission, un atome d'Uranium 235 U libère une énergie de 200Mev. 1° / Comparer cette énergie à celle mise en jeu dans la combustion complète d'un atome de carbone sachant que la combustion d'une mole de C dégage 98kcal.

 2° / Combien de tonnes de coke (assimilé à du Carbone) faut-il bruler pour produire autant de chaleur qu'un kg de ^{235}U . On donne U=235,12

Exercice 6: (Pour Etudiant)

1°/ le tritium³₁H se désintègre avec une constante radioactive : $\lambda = 1.79.10^{-9} \, \text{s}^{-1}$.

- a- Quelle est le temps de demi-vie de tritium? donner le résultat en année.
- b- On considère une masse de tritium qui donne 2.10⁶ d.p.s, Quelle est la valeur de la masse.
- 2° / l'isotope de l'iode $^{131}_{53}$ I est utilise en médecine dans le diagnostic le traitement de cancers, sachant qu'il a un temps-vie T=8 jours, subit une désintégration radioactive de type \mathbf{G}^{-} tritium $^{3}_{1}$ H se désintègre avec une constante radioactive : $\lambda = 1.79.10^{-9} \, \mathrm{s}^{-1}$.
- a- Donner la réaction de désintégration de l'iode ¹³¹I.
- b- L'activité de l'échantillon de l'iode ¹³¹I est de 420 Bq le 10 juin 2004 à11 heures, déterminer l'activité de l'échantillon le 18 juin 2004 juin 2004 à11 heures.
- c- Combien reste-t-il d'atomes sur l'échantillonde 10^{10} au bout de 8 jours.

Exercice 7: (Pour Etudiant)

Calculer en MeV l'énergie libérée par les deux réactions envisagées par les réacteurs à fission? Laquelle est la plus intéressante ?

$${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{1}^{1}H + {}_{1}^{3}H$$

 ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$

Pour la seconde réaction, calculer l'énergie libérée par un gramme de deutérium Données : L'énergie de liaison par nucléon (en Mev/ nucléon) $^2_1H=1.11$; $^3_1H=2.38$; $^4_1He=7.07$