

Automne-Hiver 2008-2009 Section : B

Semestre : S_1

Filière de Sciences Économiques et de Gestion

Module 3 : Introduction aux Sciences économiques : Instruments d'Analyse Économique Matière

> Professeure Amale LAHLOU www.amalelahlou.net

Corrigé du Contrôle Final

Énoncé

Exercice 1: Soient p et q deux propositions simples. En utilisant les règles logiques, simplifier la proposition composée:

$$(p \wedge \bar{q}) \vee (p \wedge q) \vee (\bar{p} \wedge \bar{q}).$$

Exercice 2 : Via un raisonnement par récurrence, montrer que $(4^n - 1)$ est divisible par 3 pour tout $n \in \mathbb{N}$.

Exercice 3: La relation binaire suivante est-elle une relation d'équivalence dans \mathbb{N} ?

$$a, b \in \mathbb{N}$$
 $a \mathcal{R} b \iff \exists n \in \mathbb{N}$ $a - b = 3n$.

Exercice 4 : Soit l'intervalle I_m de \mathbb{R} défini par : $I_m =$ $\{x \in \mathbb{R} \, / \quad |x - 1| \le m^2\}$

- 1. Écrire en extension l'intervalle I_m ;
- 2. Expliciter les intervalles I_{-1} , I_0 , I_1 et I_2 ;
- 3. En déduire l'ensemble $I_2 \cap \mathbb{N}$;
- 4. Déterminer les valeurs de m pour que $I_m \subseteq$ [-3, 2];
- 5. Existe-il m tel que $I_m \cap [-3, 2] = \emptyset$.

Exercice 5 : Soit le polynôme :

$$P(x) = x^5 - x^4 - 9x^3 + 13x^2 + 8x - 12.$$

- 1. Calculer P(-1) et P(1), puis conclure;
- 2. Déterminer Q(x) le quotient de la division Euclidienne de P(x) par $(x^2 - 1)$;
- 3. Vérifier que 2 est racine de Q(x), puis factoriser Q(x) via la méthode des coefficients indéterminés;
- 4. En déduire une factorisation en éléments simples de P(x).

Réponse

Solution 1: Simplifions l'expression suivante :

$$(p \wedge \bar{q}) \vee (p \wedge q) \vee (\bar{p} \wedge \bar{q})$$

$$(p \wedge \bar{q}) \vee (p \wedge q) \vee (\bar{p} \wedge \bar{q})$$

$$\equiv [(p \wedge \bar{q}) \vee (p \wedge q)] \vee (\bar{p} \wedge \bar{q}) \text{ (car } \vee \text{ associative)}$$

$$\equiv [p \wedge (\bar{q} \vee q)] \vee (\bar{p} \wedge \bar{q}) \text{ (\wedge distributive par rapport `a` \lor)}$$

$$\equiv (p \wedge \theta) \vee (\bar{p} \wedge \bar{q}) \text{ (car } \bar{q} \vee q = \theta \text{ tautologie)}$$

 $\equiv p \vee (\bar{p} \wedge \bar{q}) \text{ (car } p \wedge \theta = p, \theta \text{ neutre pour } \wedge)$ $\equiv (p \vee \bar{p}) \wedge (p \vee \bar{q}) \ (\vee \text{ distributive par rapport à } \wedge)$

 $\equiv \theta \wedge (p \vee \bar{q}) (\operatorname{car} p \vee \bar{p} = \theta)$ $\equiv p \vee \bar{q} \pmod{\theta}$ neutre pour \wedge)

D'où, la proposition

$$(p \wedge \bar{q}) \vee (p \wedge q) \vee (\bar{p} \wedge \bar{q}) \equiv p \vee \bar{q}.$$

Solution 2 : Montrons par récurrence que :

 $\forall n \in \mathbb{N}, \quad 4^n - 1 \text{ est divisible par } 3.$

c'est-à-dire,

$$\forall n \in \mathbb{N}, \quad \exists k \in \mathbb{Z} \quad 4^n - 1 = 3k.$$

Vérification: Pour n = 0 on a $4^0 - 1 = 0 = 3(0)$. La propriété est donc vraie pour n=0.

Hypothèse de récurrence : Supossons que la propriété est vraie à l'ordre n, c'est-à-dire,

$$\exists k \in \mathbb{Z} \text{ tel que } 4^n - 1 = 3k.$$

Démonstration: Montrons que la propriété est vraie à l'ordre (n+1), c'est-à-dire,

$$\exists k' \in \mathbb{Z} \text{ tel que} \quad 4^{n+1} - 1 = 3k'.$$

$$4^{n+1} - 1 = 4 \cdot 4^n - 1$$

$$= 4(3k+1) - 1$$

$$= 3(4k) + 3$$

$$= 3(4k+1)$$

$$= 3k'$$

avec $k' = 4k + 1 \in \mathbb{Z}$

Conclusion: $\forall n \in \mathbb{N}, 4^n - 1$ est divisible par 3.

Solution 3: Soit la relation binaire:

$$a, b \in \mathbb{N}$$
 $a \mathcal{R} b \iff \exists n \in \mathbb{N}$ $a - b = 3n$.

 \mathcal{R} n'est pas une relation symétrique dans \mathbb{N} est par suite, elle n'est pas une relation d'équivalence dans \mathbb{N} . En effet, si pour $a, b \in \mathbb{N}$, $a \mathcal{R} b$ alors $\exists n \in \mathbb{N}$ tel que a - b = 3n, et par suite b - a = 3(-n). Ce qui implique qu'on a pas $b \mathcal{R} a$ puisque $(-n) \notin \mathbb{N}$.

$$I_m = \{x \in \mathbb{R} \, / \quad |x-1| \le m^2\} \qquad \text{ où } m \in \mathbb{R}$$

1. Écrivons en extension l'intervalle I_m :

$$I_m = \{x \in \mathbb{R} / |x-1| \le m^2\}$$

$$= \{x \in \mathbb{R} / -m^2 \le x - 1 \le m^2\}$$

$$= \{x \in \mathbb{R} / 1 - m^2 \le x \le 1 + m^2\}$$

$$= [1 - m^2, 1 + m^2].$$

2. Explicitons les intervalles I_{-1} , I_0 , I_1 et I_2 :

$$I_{-1} = [1-1, 1+1] = [0, 2]$$

 $I_0 = [1-0, 1+0] = \{1\}$
 $I_1 = [1-1, 1+1] = [0, 2]$
 $I_2 = [1-4, 1+4] = [-3, 5]$

- 3. $I_2 \cap \mathbb{N} = [-3, 5] \cap \mathbb{N} = \{0, 1, 2, 3, 4, 5\}.$
- 4. Déterminer les valeurs de m pour que :

$$I_m \subseteq [-3, 2]$$

$$I_m \subseteq [-3, 2] \Leftrightarrow -3 \le 1 - m^2 \text{ et } 1 + m^2 \le 2$$

$$\Leftrightarrow m^2 \le 4 \text{ et } m^2 \le 1$$

$$\Leftrightarrow m^2 \le 1$$

$$\Leftrightarrow |m| \le 1$$

$$\Leftrightarrow -1 \le m \le 1$$

$$\Leftrightarrow m \in [-1, 1].$$

5. Il n'existe aucune valeur de m telle que

$$I_m \cap [-3,2] = \emptyset.$$

En effet,

$$I_m \cap [-3, 2] = \emptyset \Leftrightarrow 1 + m^2 < -3 \text{ ou bien } 2 < 1 - m^2$$

 $\Leftrightarrow m^2 < -4 \text{ ou bien } m^2 < -1$

et dans les deux cas c'est impossible.

Solution 5 : Soit le polynôme

$$P(x) = x^5 - x^4 - 9x^3 + 13x^2 + 8x - 12.$$

1. On a:

$$P(-1) = -1 - 1 + 9 + 13 - 8 - 12 = 0$$

 $P(1) = 1 - 1 - 9 + 13 + 8 - 12 = 0$

P(x) est divisible par (x+1) et par (x-1). Donc, P(x) est divisible par $(x^2 - 1) = (x + 1)(x - 1)$.

2. Déterminons Q(x), le quotient de la division Euclidienne de P(x) par (x^2-1) :

et par suite,
$$x^{5} - x^{4} - 9x^{3} + 13x^{2} + 8x - 12$$

$$-x^{5} + x^{3}$$

$$-x^{4} - 8x^{3} + 13x^{2} + 8x - 12$$

$$x^{4} - x^{2}$$

$$-8x^{3} + 12x^{2} + 8x - 12$$

$$8x^{3} - 8x$$

$$12x^{2} - 12$$

$$-12x^{2} + 12$$
et par suite,
$$Q(x) = (x - 2)(x + 3)(x - 2) = (x - 2)^{2}(x + 3).$$
4. On déduit que :
$$P(x) = (x^{2} - 1)Q(x)$$

$$= (x - 1)(x + 1)(x - 2)^{2}(x + 3).$$

Donc,

$$Q(x) = x^3 - x^2 - 8x + 12$$

Ainsi,

$$P(x) = (x^2 - 1)(x^3 - x^2 - 8x + 12).$$

3.

$$Q(2) = 2^3 - 2^2 - 8(2) + 12 = 0$$

Donc, 2 est bien une racine de Q(x).

Factorisons Q(x) via la méthode des coefficients indéterminés : on remarque que $\deg(Q(x)) = 3$ et et Q(x) est divisible par (x-2). Autrement dit,

$$\exists Q_1(x) \in \mathbb{R}[X], \quad Q_1(x) = ax^2 + bx + c \ (a, b, c \in \mathbb{R} \text{ et } a \neq 0)$$

tel que,

$$Q(x) = (x-2)Q_1(x).$$

Ainsi,

$$x^3 - x^2 - 8x + 12 = (x - 2)(ax^2 + bx + c).$$

De façon directe, on peut montrer que

$$a = 1$$
 et $c = -6$.

Reste à déterminer b.

$$x^{3} - x^{2} - 8x + 12 = (x - 2)(ax^{2} + bx + c)$$

$$= (x - 2)(x^{2} + bx - 6)$$

$$= x^{3} + (b - 2)x^{2} - (6 + 2b)x + 12$$

Par identification des coefficients des deux polynômes, on trouve:

$$\begin{cases} b-2=-1 \\ 6+2b=8 \end{cases} \implies b=1.$$

Ainsi, $Q_1(x) = x^2 + x - 6$ et par suite,

$$Q(x) = (x-2)(x^2 + x - 6).$$

En calculant le discriminant de $Q_1(x) = 0$ ($\Delta = 5^2$), on trouve que $x_1 = -3$ et $x_2 = 2$ sont deux racines de $Q_1(x)$. D'où,

$$Q_1(x) = (x-2)(x+3)$$

et par suite,

$$Q(x) = (x-2)(x+3)(x-2) = (x-2)^{2}(x+3)$$

4. On déduit que :

$$P(x) = (x^2 - 1)Q(x)$$

= $(x - 1)(x + 1)(x - 2)^2(x + 3).$