Université Cadi Ayyad Faculté polydisciplinaire Béni-Mellal



Année universitaire : 2006 / 2007

Section: S.E.G - S2-

## D.S de Mathématiques I

## Exercice 1(5pts).

1/ Peut-on appliquer le Théorème de Rolle à la fonction f, où  $f(x) = |x^2 - x|$ , sur l'intervalle [-1,1]?

2/ Calculer la dérivée n<sup>ème</sup> de la fonction suivante :  $g(x) = x^2 e^x$ .

<u>Indication</u>: utiliser la formule de Leibnitz  $(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)} g^{(n-k)}$ .

Exercice 2(5pts).

Soit la fonction f définie par f(x) = -Logx

1/ Démontrer que f est convexe sur un domaine que l'on déterminera.

2/ Déduire l'inégalité suivante :

$$\frac{ax+by}{a+b} \ge x^{\frac{a}{a+b}} y^{\frac{b}{a+b}} ,$$

où a,b,x,y>0.

3/ Donner le DL de f à l'ordre 3 au voisinage de  $x_0 = 1$ .

## Exercice 3 (10pts).

On considère la fonction réelle définie par :  $f(x) = \frac{(1+x)e^{-\frac{1}{x}}}{1+e^{-\frac{1}{x}}}$ 

1/Déterminer le domaine de définition D de f.

2/ Montrer que:  $f(x) = \frac{1+x}{1+e^{\frac{1}{x}}}$ 

3/ Calculer f'(x) pour tout  $x \in D$ .

'4/ i/ Montrer à l'aide du Théorème des Accroissements finis que pour tout réel x, on a :

 $e^x > x$ 

ii/ Donner le tableau de variation de f.

5/ Calculer le DL de  $\frac{f(x)}{x}$  à l'ordre 2 au voisinage de l'infini.

6/ Déterminer l'équation de l'asymptote ( $\Delta$ ) à la courbe de f.

Préciser la position de la courbe par rapport à ( $\Delta$ ).

Numérisation : THEBRERVE