

Année universitaire : 2017/2018 2^{ième} année licence – Informatique module : Théorie des langages

Epreuve de Moyenne Durée

le 27/02/2018 – Durée 1h 30mn – documents non autorisés

EXERCICE 1: (6 pts)

Soit V un alphabet fini. On désigne par $\mathcal{P}(V^*)$ l'ensemble des parties de V^* (on note aussi 2^{V^*}).

On définit la fonction $C: \mathcal{P}(V^*) \to \mathcal{P}(V^*)$ comme suit :

pour tout langage L défini sur V, on a : $C(L) = \{ w \in V^* / \exists u \in L \text{ tel que } w = u.u \}.$

- 1) Soit $L = \{ \epsilon, ab, baa, babab \}$ et $L_1 = C(L)$. Énumérer les éléments de L_1 . (1 pt)
- 2) Soit $L = \{ a^n / n \ge 0 \}$ et $L_2 = C(L)$. Caractérisez L_2 , puis montrer, à l'aide du théorème de Nerode, que L_2 est régulier. (2 pts)
- 3) Soit $L = \{a, b\}^*$ et $L_3 = C(L)$.
 - 3-1) Trouver une grammaire de type 1 ou de type 0 pour L_3 . (1,5 pts)
 - 3-2) À l'aide du théorème de Nerode, montrer que L_3 n'est pas régulier. (1,5 pts)

EXERCICE 2: (7 pts)

- I) Trouver:
 - I-1) une grammaire de type 3 pour L_1 = langage des mots de $\{a,b\}^*$ où chaque lettre «b» est suivie, immédiatement, par au moins deux lettres «a» consécutives (c-à-d «aa»); (1,5 pts)
 - I-2) une grammaire de type 2 pour $L_2 = \{ 0^n.1^k.0^m / n \ge 0, m \ge 1, k = n+m \}$; (1,5 pts)
 - I-3) une grammaire de type 1 pour $L_3 = \{ a^{n^2} / n \ge 0 \} (= \{ \epsilon, a, aaaa, a^9, a^{16}, \dots, a^{n^2}, \dots \}).$ (1,5 pts)
- II) Trouver un automate d'états finis généralisé à un seul état pour le langage L₁ de I-1). (1,5 pts)
- III) Trouver une expression régulière pour le langage L_1 de I-1). (1 pt)

EXERCICE 3: (7 pts)

Soit L_1 = ensemble des mots de $\{a,b\}^*$ tel que dans tout mot de L_1 , toute séquence d'un nombre impair de 'a' est immédiatement suivie d'une séquence d'un nombre pair, non nul, de 'b'.

Soit $L_2 = \{ab, babb\}.$

- 1) Construire un automate d'états finis simple qui accepte L₁. (1,5 pts)
- 2) Construire un automate d'états finis simple qui accepte L_2 . (1,5 pts)
- 3) Construire un automate d'états finis simple qui accepte $L_1 \cup L_2$. (1,5 pts)
- 4) Rendre l'automate de 3) déterministe, s'il ne l'est pas. (1,5 pts)
- 5) À partir de l'automate de L_1 trouvé en 1), trouver l'expression régulière qui dénote L_1 . (1 pt)

Bon courage!