Université **Dr. Moulay Tahar** de Saïda

Faculté: Des sciences,

Troisièma année Licence en Mathématique

Le 24/01/2018

Département: De Mathématiques

Matière: Optimisation sans contrainte

Corrigé de l'examen Final

Exercice 1. : (07 points)

1. Montrer que si $f: \mathbb{R}^n \to \mathbb{R}$ possède un minimum, alors celui-ci est unique. Supposons que m_1 et m_2 soient deux minima de f. Il existe alors deux réels x_1 et x_2 pour lesquels m_1 et m_2 sont atteints, respectivement. Comme m_1 est un minimum, alors $m_1 = f(x_1) \leq f(x)$

pour tout x.(0,5 points)

En prenant $x = x_2$, on d'eduit que $f(x_1) \le f(x_2) \Longrightarrow m_1 \le m_2$. (0,5 points)

De manière analogue, on montre que $m_2 \leq m_1$, si bien que $m_1 = m_2$. (0,5 points)

2. En Suppose maintenant que f est strictement convexe. Pour montrer que f atteint son minimum

en un unique point, considérons \overline{x} et x^* tels que:

$$f(\overline{x}) = f(x^*) = \min f = m$$
 (0,5points)

on note alors $x = \frac{\overline{x} + x^*}{2}$ et on applique l'inégalité de stricte convexité pour $t = \frac{1}{2}$. (0, 5points) On obtient:

$$f(x) < \frac{1}{2}f(\overline{x}) + \frac{1}{2}f(x^*) = m$$
 (0,5points)

ce qui contredit le fait que m est le minimum de f sur \mathbb{R} .

3. (a) i. On écrit

$$f(x^*) \le f(x^* + \epsilon h) = f(x^*) + \langle \nabla f(x^*), \epsilon h \rangle + |\epsilon h| \varphi(\epsilon h), \text{ avec } \varphi(\epsilon h) \underset{\epsilon \to 0}{\longrightarrow} 0.$$

On divise alors par $\epsilon > 0$ puis en fait tendre ϵ vers 0^+ . En fin , en choisissant dans le développement précédent $\pm h$ pour tout $h \in \mathbb{R}^n$, la conclusion s'ensuit. (1,5points)

(a) ii On utilise en développement de Taylor-Young à l'ordre 2 et on utilise les memes notations que précédemment. On a:

$$f(x^* + h) = f(x^*) + \langle \nabla f(x^*), h \rangle + \frac{1}{2} \langle Hess \ f(x^*)h, h \rangle + \|h\|^2 \varphi(h)$$
$$= f(x^*) + \frac{1}{2} \langle Hess \ f(x^*)h, h \rangle + \|h\|^2 \varphi(h)$$

Comme précédemment, on remplace h par ϵh , h quelconque, ϵ petit, puis en divise par ϵ^2 et en fait tendre ϵ vers 0.(1,5points)

4. Soit $f: I \to \mathbb{R}$ une fonction convexe et stricte croissante, étudier la convexité de $f^-: f(I) \to I$ Soit $y_1, y_2 \in f(I)$ et $x_1, x_2 \in I$ tels que : $y_1 = f(x_1)$ et $y_2 = f(x_2)$ soit aussi $t \in [0, 1]$. alors

$$f^{-}(ty_1 + (1-t)y_2) = f^{-}(tf(x_1) + (1-t)f(x_2))$$
 (0,5 points)

par convexité de f

$$f^{-}(ty_1 + (1-t)y_2) \ge f^{-}(f(tx_1 + (1-t)x_2)) = tx_1 + (1-t)x_2$$

= $t f^{-}(y_1) + (1-t) f^{-}(y_2)$ (0,5 points)

Ainsi f^- est concave.

Exercice 2. :(06 points)

$$f(x,y) = xye^{\left(x^2 + y^2\right)}$$

(a) Les poits critiques de f sont des solutions du systhème

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = y\left(1 + 2x^2\right)e^{\left(x^2 + y^2\right)} = 0\\ \frac{\partial f}{\partial y}(x,y) = x\left(1 + 2y^2\right)e^{\left(x^2 + y^2\right)} = 0 \end{cases}$$
 (01 point)

l'unique solution est x = y = 0 (01 point).

(b) $\begin{cases} \frac{\partial^{2} f}{\partial x^{2}}(x,y) = 2yx(3+2x^{2})e^{(x^{2}+y^{2})} \\ \frac{\partial^{2} f}{\partial x \partial y}(x,y) = (1+2x^{2})(1+2y^{2})e^{(x^{2}+y^{2})} \\ \frac{\partial^{2} f}{\partial x^{2}}(x,y) = 2xy(3+2y^{2})e^{(x^{2}+y^{2})}. \end{cases}$ (01 point)

Au point (x,y) = (0,0) la matrice hessienne $H_f(0,0) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ comme det $H_f(0,0) = -1$, $H_f(0,0)$ a des valeurs propres non nulles et de signes opposés, le point (0,0) est un point selle. (01 point)

(c) $\lim_{x \to +\infty} f(x,1) = \lim_{x \to +\infty} x e^{x^2} = +\infty$ et $\lim_{x \to -\infty} f(x,1) = \lim_{x \to -\infty} x e^{x^2} = -\infty$ donc f admet des valeurs arbitrairement petites vers $(-\infty)$. (01 point)

Elle n'admet pas donc ni maximum ni minimum global sur \mathbb{R}^2 . (01 point)

Exercice 3. (06 points)

(a)
$$\nabla f(x,y) = \begin{pmatrix} 2ax \\ 2by \end{pmatrix}$$
 (0,5 points) et $\nabla^2 f(x,y) = \begin{pmatrix} 2a & 0 \\ 0 & 2b \end{pmatrix}$ (0,5 points)

Le seul point critique est donc (0,0) et on doit distinguer selon les signes de a et b pour étudier la matrice hessienne. On écarte les cas où a ou b est nul, dont l'analyse est immédiate. (01 point)

- si a > 0 et b > 0, alors la Hessienne est d'efinie positive, donc f admet en (0,0)un minimum local (en fait global). (0.5 points)
- si~a < 0 et b < 0, alors la Hessienne est définie négative, donc f admet en (0,0) un maximum local (en fait global). (0.25 points)
- $si\ a\ et\ b\ sont\ de\ signe\ contraire,\ alors\ f\ admet\ en\ (0,0)un\ point\ selle.\ (0.25\ points)$

(b)
$$\nabla f(x,y) = \begin{pmatrix} 2xy^2 + 2x + 2ay \\ 2x^2y + 2y + 2ax \end{pmatrix}$$
 (0.5 points) et $\nabla^2 f(x,y) = \begin{pmatrix} 2y^2 + 2 & 4xy + 2a \\ 4xy + 2a & 2x^2 + 2 \end{pmatrix}$ (0.5 points)

Les points critiques satisfont $x(1+y^2) + ay = 0$ et $(y(1+x^2) + ax = 0$. Si a = 0, alors le seul point critique est (0,0). $(\mathbf{0},\mathbf{5} \ \mathbf{points})$

Résumons:

- $-si\ a=0$: un seul point critique $(0,0).(\mathbf{0},\mathbf{25}\ \mathbf{points})$
- $-si\ 0 < a < 1$: pas de point critique. (0,25 points)
- si $a \ge 1$: deux points critiques $(\sqrt{a-1}, -\sqrt{a-1})$ et $-(-\sqrt{a-1}, \sqrt{a-1})$ (confondus avec l'origine pour a = 1). $(\mathbf{0}, \mathbf{25} \ \mathbf{points})$

Pour a = 0, il suffit d'étudier le Hessienne en (0,0):

$$\nabla^2 f(0,0) = \left(\begin{array}{cc} 2 & 0\\ 0 & 2 \end{array}\right)$$

donc il s'agit d'un minimum local. (0, 25 points)Pour a > 1,

$$\nabla^2 f(\sqrt{a-1}, -\sqrt{a-1}) = \nabla^2 f(-\sqrt{a-1}, \sqrt{a-1}) = 2 \begin{pmatrix} a & 2-a \\ 2-a & a \end{pmatrix}$$

Le déterminant de cette matrice vaut 16(a-1) > 0 et la trace 4a > 0, donc les deux valeurs propres sont strictement positives. On conclut que f admet en les deux points critiques des minima relatifs. (0,5) points