Faculté des Sciences 1^{ière} Année Licence M.I Département de Mathématiques Hiver 2018

Examen Final en Analyse 1 2 heures

Exercice 1. Soit l'ensemble

$$X = \left\{ \frac{x+1}{x+2}, \quad x \in \mathbb{R}, \quad x \leqslant -3 \right\}.$$

Montrer que X admet une borne supérieure et une borne inférieure et les déterminer.

Exercice 2. Pour tout entier $n \in \mathbb{N}^*$, on considère la fonction $f_n : \mathbb{R}^+ \to \mathbb{R}$ définie par :

$$f_n(x) = \exp\left(-\frac{x}{n}\right) - 2(1-x).$$

- 1. Dans cette question, l'entier $n \in \mathbb{N}^*$ est fixé.
 - (a) Montrer que la fonction f_n est strictement croissante sur \mathbb{R}^+ .
 - (b) Montrer qu'il existe un unique $x_n \in]0,1[$ tel que $f_n(x_n)=0.$
 - (c) Montrer que $f_{n+1}(x_n)$ est strictement positif.
- 2. On considère maintenant la suite de terme général x_n .
 - (a) Montrer à l'aide de la question pécédente que la suite $(x_n)_{n\in\mathbb{N}^*}$ est décroissante.
 - (b) En déduire que la suite $(x_n)_{n\in\mathbb{N}^*}$ est convergente. On notera $\lim_{n\to\infty} x_n = x$.
- 3. Dans cette partie, il s'agit de calculer x.
 - (a) Enoncer le théorème des gendarmes (ou d'encadrement) pour les suites réelles.
 - (b) Montrer que la suite $\left(-\frac{x_n}{n}\right)$ tend vers 0 lorsque n tend vers $+\infty$.
 - (c) Calculer x.

Exercice 3. Soit f la fonction définie par

$$f(x) = (x-2)^2 \ln(x^3 - 8).$$

- 1. Donner le domaine de définition de f.
- 2. Prouver que f est prolongeable par continuité en $x_0 = 2$.

Indication: $\lim_{x\to 0} x^n \ln(x) = 0$ avec $n \in \mathbb{N}^*$.

Exercice 4. 1. Soit x > 0. Montrer qu'il existe un $c \in]0, x[$ tel que $e^x - 1 = xe^c$.

2. Soit $f:[0,+\infty[\to\mathbb{R}, donnée par$

$$f(x) = e^{\frac{x}{2}} - e^{-\frac{x}{2}} - x.$$

Dresser le tableau de variation de la dérivée f' de f. Quel est le signe de f' sur $]0, +\infty[?]$

- 3. Utiliser la question précédente pour dresser le tableau de variation de f.
- 4. En déduire l'inégalité

$$f(x) > 0, \quad \forall x > 0.$$

5. En déduire que

$$e^x - 1 > xe^{\frac{x}{2}}$$
.

6. Enfin, obtenir que

$$c \in \left[\frac{x}{2}, x \right[.$$

Indication: $e^a e^b = e^{a+b}, \quad a, b \in \mathbb{R}.$

◆ Bon courage◆ Dr F.Z. Mostefai