

CORRIGÉ ABREGÉ DE LA SÉRIE D'EXERCICES nº 3 de ThL

par: M.S. Habet, C. Cherifi, N. Otmani, F. Bouhatem

EXERCICE 1:

 $L = \{a, b\}.\{a, b, c\}^2 \cup \{c\}.\{a, b\}.$

a)
$$L \parallel a = (\{a, b\}, \{a, b, c\}^2) \parallel a \cup (\{c\}, \{a, b\}) \parallel a = \{a, b, c\}^2 = S1$$

$$L \parallel b = (\{a, b\}, \{a, b, c\}^2) \parallel b \cup (\{c\}, \{a, b\}) \parallel b = \{a, b, c\}^2 = S1$$

$$L \parallel c = (\{a, b\}, \{a, b, c\}^2) \parallel c \cup (\{c\}, \{a, b\}) \parallel c = \{a, b\} = S2$$

$$S1 \parallel a = \{a, b, c\} = S3$$

$$S1 \parallel b = \{a, b, c\} = S3$$

$$S1 \parallel c = \{a, b, c\} = S3$$

$$S2 \parallel a = \varepsilon = S4$$

$$S2 \parallel b = \varepsilon = S4$$

$$S2 \parallel c = \emptyset$$

$$S3 \parallel a = S3 \parallel b = S3 \parallel c = \epsilon = S4$$

$$S4 \parallel a = S4 \parallel b = S4 \parallel c = \emptyset$$

- b) L est régulier car il a un nombre fini de dérivées.
- c) Soit S0 = L. Les états de l'automate reconnaissant L sont les états Si, i=0,..,4 ; l'état initial étant S0 ; il y a un seule état final, c'est S4 (car il contient ε).



EXERCICE 2:

a) Soit S0 = {
$$a^{2.n} / n \ge 0$$
 } = { ϵ , aa, aaaa, a^6 , ..., $a^{2.n}$,}

On a:

$$S0 \parallel a = \{ a, aaa, a^5, ..., a^{2.n-1}, \} = \{ a^{2.n+1} / n \ge 0 \} = S1$$

S1 || a = {
$$\varepsilon$$
, aa, a⁴, ..., a^{2.n-2},} = { a^{2.n} / n \ge 0 } = S0

Le langage $\{a^{2.n} / n \ge 0\}$ a un nombre fini de dérivées : $S0 \parallel a^k = S0$ si k est pair, et = S1 sinon. Par conséquent il est régulier.

```
b) Soit S0 = { a^n.b^m / n, m \ge 1 }. On a : S0 \parallel a = { a^n.b^m / n \ge 0, m \ge 1 } = S1 S0 \parallel b = \emptyset S1 \parallel a = S1 S1 \parallel b = ({ a^n.b^m / n \ge 1, m \ge 1 } \cup { a^n.b^m / n = 0, m \ge 1 }) \parallel b = S0 \parallel b \cup { b^m / m \ge 1 } \parallel b = \emptyset \cup { b^m / m \ge 0 } = { b^m / m \ge 0 } = S2 S2 \parallel a = \emptyset S2 \parallel b = S2
```

Après S2, on n'obtient plus de nouveaux états ; donc il y a un nombre fini de dérivées ; par conséquent $\{a^n.b^m/n, m \ge 1\}$ est régulier.

c) Soit $S_0 = \{ a^n.b^n / n \ge 0 \}$. Calculons les dérivées de S_0 par rapport aux mots a^k , pour $k \ge 1$; pour cela on note : $S_k = S_0 \parallel a^k$ (pour $k \ge 1$).

On peut remarquer déjà que $S_k = S_{k-1} \parallel a$, pour $k \ge 1$;

on a donc:

$$\begin{split} S_1 &= S_0 \parallel a = \{a^{n\text{-}1}.b^n \, / \, n \geq 1\} = \{a^{n\text{-}1}.b^{n\text{-}1} \, / \, n \geq 1 \, \}. \{b\} = \{a^n.b^n \, / \, n \geq 0 \, \}. \{b\} = S_0.\{b\} \\ S_2 &= S_1 \parallel a = (S_0.\{b\}) \parallel a = (S_0 \parallel a).\{b\} \cup (\{b\} \parallel a) = (S_0 \parallel a).\{b\} = (S_0.\{b\}).\{b\} = S_0.\{bb\} \\ S_3 &= S_2 \parallel a = (S_0.\{bb\}) \parallel a = (S_0 \parallel a).\{bb\} = (S_0.\{b\}).\{bb\} = S_0.\{bb\} = S_0.\{b^3\} \end{split}$$

On peut généraliser en démontrant par récurrence que :

$$S_k = S_{k-1} \parallel a = (S_0.\{b^{k-1}\}) \parallel a = (S_0 \parallel a).\{b^{k-1}\} = (S_0.\{b\}).\{b^{k-1}\} = S_0.\{b^k\}, \text{ pour tout } k \geq 1.$$

Pour chaque valeur de k dans \mathbb{N} (entiers naturels), on a un langage S_k différent des autres langages S_i (pour $i\neq k$). On peut donc conclure qu'il y a une infinité de langages $(S_k)_{k\geq 1}$, tous différents les uns des autres et par conséquent il y a une infinité de dérivées du langage S_0 , donc celui-ci n'est pas régulier.

d) Soit $L = \{ w.w^R \mid w \in \{a,b\}^* \}$. L n'est pas régulier : si on calcule ses dérivées, on trouve un nombre infini. On peut aussi procéder à une démonstration par l'absurde : On suppose que L est régulier, donc d'après le théorème de Nerode, le nombre de ses dérivées par rapport aux mots sur $V = \{a,b\}$ est fini. Donc il existe deux mots u et v tels que $u \neq v$ et $L \parallel u = L \parallel v$; on peut supposer que u ou v contiennent des mélanges de lettres a et b.

 $L\parallel u=\{\ x.x^R.u^R\ /\ x\in\{a,b\}^*\ \},\ c\text{'est-\`a-dire qu'un mot }\alpha\in L\parallel u\ s\text{'\'ecrit comme }\alpha=x.x^R.u^R.$ Comme $\alpha\in L\parallel v,\ alors\ v.\alpha\in L\ ;\ donc\ v.x.x^R.u^R\in L\ pour\ tout\ x\in\{a,b\}^*.$ Par conséquent $v^R=u^R\ ;\ d\text{'où }v=u\ :\ contradiction.}$

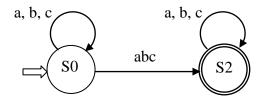
Donc L n'est pas régulier.

EXERCICE 3:

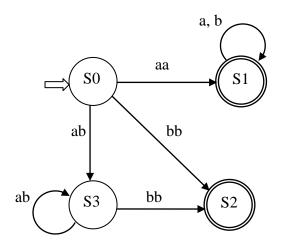
I)

I-1) L'expression régulière : $(a \cup b \cup c)^*$.a.b.c. $(a \cup b \cup c)^*$ dénote le langages des mots construits sur $\{a, b, c\}$ et qui contiennent la sous-chaine abc.

Un automate équivalent est le suivant (il est généralisé) :



I-2) automate (généralisé aussi) pour l'expression régulière : $aa.(a \cup b)^* \cup (ab)^*.bb$



II)

II-1) Soit S0 = $(1.1^*.0.0^*.1)^*.0.1^*$; S0 sera un état non final car le langage dénoté par l'expression ne contient pas ε (le plus petit mot du langage est : 0).

Calculons les dérivées de S0, pour cela posons $\alpha = (1.1^*.0.0^*.1)^*$:

 $S0 \parallel 0 = (\alpha \parallel 0).0.1^* \cup (0.1^*) \parallel 0 = ((1.1^*.0.0^*.1) \parallel 0).\alpha.0.1^* \cup 1^* = \emptyset \cup 1^* = 1^* = S1 \ \ (S1 \ est \ final \ car \ le \ langage \ qu'il \ dénote \ contient \ \epsilon)$

$$S0 \parallel 1 = (\alpha \parallel 1).0.1^* \cup (0.1^*) \parallel 1 = ((1.1^*.0.0^*.1) \parallel 1).\alpha.0.1^* = (1^*.0.0^*.1).\alpha.0.1^* = S2 \text{ (S2 est non final)}$$

 $S1 \parallel 0 = \emptyset$

$$S1 \parallel 1 = 1^* = S1$$

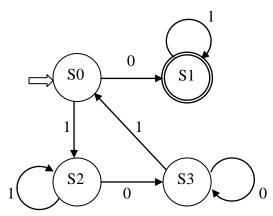
$$S2 \parallel 0 = ((1^*.0.0^*.1) \parallel 0).\alpha.0.1^* = 0^*.1.\alpha.0.1^* = S3$$
 (S3 non final)

$$S2 \parallel 1 = ((1^*.0.0^*.1) \parallel 1).\alpha.0.1^* = 1^*.0.0^*.1.\alpha.0.1^* = S2$$

$$S3 \parallel 0 = (0^*.1.\alpha.0.1^*) \parallel 0 = S3$$

$$S3 \parallel 1 = (0^*.1.\alpha.0.1^*) \parallel 1 = \alpha.0.1^* = S0$$

D'où l'automate:



II-2) Soit $S0 = (a \cup ba)^*.bb.b^*.a$; S0 sera un état non final car le langage dénoté par l'expression ne contient pas ε (le plus petit mot du langage est : bba).

Calculons les dérivées de S0, pour cela posons $\alpha = (a \cup ba)^*$:

S0 ||
$$a = (\alpha || a).bb.b^*.a \cup (bb.b^*.a) || a = (\alpha || a).bb.b^*.a = ((a \cup ba) || a).(a \cup ba)^*.bb.b^*.a$$

= $\epsilon.(a \cup ba)^*.bb.b^*.a = \alpha.bb.b^*.a = S0$

$$S0 \parallel b = (\alpha \parallel b).bb.b^*.a \cup (bb.b^*.a) \parallel b = ((a \cup ba) \parallel b).(a \cup ba)^*.bb.b^*.a \cup (bb.b^*.a) \parallel b = (a \cup ba)^*.bb.b^*.a \cup (b.b^*.a) = a.(a \cup ba)^*.bb.b^*.a \cup (b.b^*.a) = a.\alpha.bb.b^*.a \cup (b.b^*.a) = S1 \quad (S1 \text{ non final})$$

$$S1 \parallel a = ((a.\alpha.bb.b^*.a) \parallel a) \cup ((b.b^*.a) \parallel a) = \alpha.bb.b^*.a = S0$$

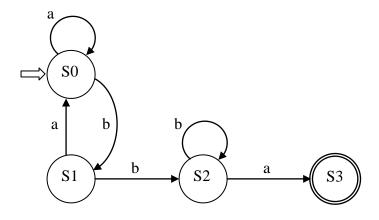
$$S1 \parallel b = ((a.\alpha.bb.b^*.a) \parallel b) \cup ((b.b^*.a) \parallel b) = \emptyset \cup b^*.a = b^*.a = S2 \text{ (S2 non final)}$$

S2
$$\parallel$$
 a = ((b*) \parallel a).a \cup (a \parallel a) = $\emptyset \cup \varepsilon = \varepsilon = S3$ (S3 final)

$$S2 \parallel b = b^*.a = S2$$

$$S3 || a = S3 || b = \emptyset$$

D'où l'automate:



EXERCICE 4:

Le résultat à établir dans cet exercice est connu sous le nom du théorème d'Arden.

1) Montrons que $A^*.B$ est solution de l'équation : $X = A.X \cup B$; pour cela effectuons le remplacement de X par $A^*.B$ dans $A.X \cup B$:

$$A.(A^*.B) \cup B = (A.A^*.B) \cup B = A^+.B \cup B = (A^+ \cup \epsilon \).B = A^*.B = X \ ; \ d\text{`où la relation}.$$

Montrons que $A^*.B$ est la solution minimale au sens que $A^*.B$ est inclus dans toute autre solution Y de l'équation. Soit $w \in A^*.B$, donc w s'écrit w = x.y; où $x \in A^*$ et $y \in B$.

$$x \in A^* \Rightarrow \exists n \ge 0 \text{ tel que } x \in A^n \text{ ; d'où } w \in A^n.B.$$

Soit Y une solution quelconque de l'équation, on a :

$$Y = A.Y \cup B = A.(A.Y \cup B) \cup B = A^2.Y \cup A.B \cup B = A^2. (A.Y \cup B) \cup A.B \cup B = A^3.Y \cup A^2.B \cup A.B \cup B = \dots = A^{n+1}.Y \cup A^n.B \cup \dots \cup A.B \cup B$$

Or $w \in A^n$. B donc $w \in Y$, où Y est toute solution de l'équation. On a donc A^* . B $\subseteq Y$.

2) Dans cette question, on suppose : $\epsilon \notin A$. On raisonne par l'absurde : supposons qu'il existe une autre solution différentes X' différente de A^* .B.

Soit f le plus petit mot de X' qui n'appartient pas à A*.B.

 $f \in X' \Rightarrow f \in A.X'$ ou $f \in B$. On peut écrire que $f \notin B$ car sinon il appartiendrait à $A^*.B$.

Donc $f \in A.X' \Rightarrow f = g.h$ avec $g \in A$ et $h \in X'$. Or $\epsilon \notin A$, donc $g \neq \epsilon$ et donc |h| < |f|.

Il existe deux cas pour h:

- $h \in A^*.B \Rightarrow gh \in A.A^*.B \Rightarrow f \in A^+.B \Rightarrow f \in A^*.B$ ce qui est faux.
- $h \notin A^*$.B, sachant que $h \in X$ ': contradiction car h est plus petit que f qu'on a supposé être le petit élément de X' n'appartenant pas à A^* .B.

Corrigé abrégé de la Série n° 3 de Théorie des Langages

EXERCICE 5:

1) On va associer une variable à chaque non terminal de g : X0 (associé à S), X1 (à A) et X2 (à B). On traduit les règles de productions de P en équations d'expressions régulières :

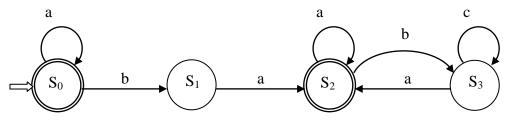
$$\begin{cases} X0 = a.X1 \cup \varepsilon \\ X1 = b.X1 \cup c.X2 \\ X2 = b.X2 \cup a \end{cases}$$

2) En appliquant le théorème d'Arden (voir exo 4) à la $3^{ième}$ équation, on obtient : $X2 = b^*$.a. En remplaçant X2 dans la $2^{ième}$ équation on aura : $X1 = b.X1 \cup c.b^*$.a ; puis avec le théorème d'Arden on obtient : $X1 = b^*.c.b^*$.a. On remplace dans la première équation et on aura : $X0 = a.b^*.c.b^*$.a $\cup \epsilon$ qui dénote le langage engendré par g.

EXERCICE 6:

a) Pour trouver l'automate simple associé à g, on peut décomposer la règle $S \to baA$ en deux règles : $S \to bC$ et $C \to aA$; ou C est un nouveau non terminal.

On construit l'automate simple \mathcal{A} équivalent en associant un état de l'automate à chaque non-terminal, cet état sera final lorsque le non-terminal associé produit ε . Les transitions de \mathcal{A} seront déduites à partir des règles de productions de g.



b) Le système d'équations régulières associé à A:

$$\begin{cases} X0 = a.X0 \cup b.X1 \cup \varepsilon \\ X1 = a.X2 \end{cases}$$
$$X2 = a.X2 \cup b.X3 \cup \varepsilon$$
$$X3 = c.X3 \cup a.X2$$

c) Pour trouver l'expression régulière qui dénote L(A), on résout le système de la question b) pour trouver la valeur de X0.

De la quatrième équation on a : $X3 = c^*$.a.X2; on remplace dans la troisième :

 $X2 = a.X2 \cup b.c^*.a.X2 \cup \varepsilon = (a \cup b.c^*.a).X2 \cup \varepsilon$ qui se résout avec $X2 = (a \cup b.c^*.a)^*.$

On remplace dans la deuxième : $X1 = a.(a \cup b.c^*.a)^*$. Puis dans la première :

 $X0 = a.X0 \cup b.a.(a \cup b.c^*.a)^* \cup \epsilon$. Et on obtient ainsi la solution : $X0 = a^*.(b.a.(a \cup b.c^*.a)^* \cup \epsilon)$.

Donc $L(\mathcal{A})$ est dénoté par l'expression régulière : a^* .ba. $(a \cup b.c^*.a)^* \cup a^*$.

----- Fin du corrigé de la série 3 de ThL -----