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Module : 4 Stress-Strain Relations

4.1.1 INTRODUCTION

In the previous chapters, the state of stress at a point was defined in terms of six
components of stress, and in addition three equilibrium equations were developed to relate
the internal stresses and the applied forces. These relationships were independent of the
deformations (strains) and the material behaviour. Hence, these equations are applicable
to all types of materials.

Also, the state of strain at a point was defined in terms of six components of strain. These
six strain-displacement relations and compatibility equations were derived in order to relate
uniquely the strains and the displacements at a point. These equations were also independent
of the stresses and the material behavior and hence are applicable to all materials.

Irrespective of the independent nature of the equilibrium equations and strain-displacement
relations, in practice, it is essential to study the general behaviour of materials under applied
loads including these relations. This becomes necessary due to the application of a load,
stresses, deformations and hence strains will develop in a body. Therefore in a general
three-dimensional system, there will be 15 unknowns namely 3 displacements, 6 strains and
6 stresses. In order to determine these 15 unknowns, we have only 9 equations such as 3
equilibrium equations and 6 strain-displacement equations. It is important to note that the
compatibility conditions as such cannot be used to determine either the displacements or
strains. Hence the additional six equations have to be based on the relationships between six
stresses and six strains. These equations are known as "Constitutive equations™ because they
describe the macroscopic behavior of a material based on its internal constitution.

4.1.2 LINEAR ELASTICITY-GENERALISED HOOKE’S LAW

There is a unique relationship between stress and strain defined by Hooke’s Law, which is
independent of time and loading history. The law assumes that all the strain changes
resulting from stress changes are instantaneous and the system is completely reversible and
all the input energy is recovered in unloading.

In case of uniaxial loading, stress is related to strain as
o, =Eeg, (4.0
where E is known as "Modulus of Elasticity".

The above expression is applicable within the linear elastic range and is called
Hooke’s Law.

In general, each strain is dependent on each stress. For example, the strain ¢, written as a
function of each stress is
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e~ Cuo, + C120'y+ Cio,+ Cuty+ Cis7y,+ Cier, + Ciy7, + C18T2y+ Cio7yy
(4.1)

Similarly, stresses can be expressed in terms of strains stating that at each point in a material,
each stress component is linearly related to all the strain components. This is known as
"Generalised Hook’s Law".

For the most general case of three-dimensional state of stress, equation (4.0) can be written
as

{O-ij }: (Dijkl) {gkl} 4.2)
where (Dijkl )= Elasticity matrix

{aij }= Stress components

{gk, } = Strain components

Since both stress o; and strain ¢;; are second-order tensors, it follows that Dy, is a fourth

order tensor, which consists of 3* = 81 material constants if symmetry is not assumed.
Therefore in matrix notation, the stress-strain relations would be

o X Dll DlZ Dl3 D14 D15 D16 Dl7 D18 D19 SX
Gy D21 D22 D23 D24 D25 D26 D27 D28 D29 gy
o, D3l D32 D33 D34 D35 D36 D37 D38 D39 g,
T Xy D4l D42 D43 D44 D45 D46 D47 D48 D49 4 Xy
Tyz = D51 D52 D53 D54 D55 D56 D57 D58 D59 7yz (43)
T D6l D62 D63 D64 D65 D66 D67 D68 D69 Y
Tx D7l D72 D73 D74 D75 D76 D77 D78 D79 Y x
4 zy D8l D82 D83 D84 D85 D86 D87 DSS D89 /4 zy
Tyx L D91 D92 D93 D94 D95 D96 D97 D98 D99_ yyx

Now, from o; =0 and ¢&; = ¢&;; the number of 81 material constants is reduced to 36

under symmetric conditions of Dy = Dy = Dy = Dy

Therefore in matrix notation, the stress — strain relations can be
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Oy D, D, D; D, Dy D &y
Oy D ” D), Dy D, Dy Dy &y
O _ D, D, Dy D, Ds Dg| g 44)
Tyy D, D, D3 Dy Dy Dyl |7y
Ty, D, D, Dy Dy, Dy Dy Yy
Tx 1D Dz Dy Dy Dis Degl |7

Equation (4.4) indicates that 36 elastic constants are necessary for the most general form of
anisotropy (different elastic properties in all directions). It is generally accepted, however,

that the stiffness matrix D;; is symmetric, in which case the number of independent elastic

constants will be reduced to 21. This can be shown by assuming the existence of a strain
energy function U.

It is often desired in classical elasticity to have a potential function

U=Ul(e) (4.5)
with the property that

| _ o, (4.6)
68ij

Such a function is called a "strain energy" or "'strain energy density function™.
By equation (4.6), we can write
ou

1

Differentiating equation (4.7) with respect to ¢;  then

2
oV =D; (4.8)
0&,0¢;
The free index in equation (4.7) can be changed so that
oU
—=0.=D.¢ 4.9
st j Ji%i ( )
Differentiating equation (4.9) with respect to &;, then,
2
ou _ D, (4.10)
0¢ i€,
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Hence, equations (4.8) and (4.10) are equal, or D;; = D;;
which implies that D is symmetric. Then most general form of the stiffness matrix or
array becomes

Oy Dy D, Dy D, Dy Dy &y
O, D, D, Dy D, Dy Dy &y
O _ Di; Dy Dy Dy Dy Dy & 419
Tyy Dy Dy Dy Dy Dy Dy Vxy
Ty, Ds Dy Dy Dy Dy Dy Yy
Tax 1D Dy Diy Dy Dsg D] 7
Or
O-X [ Dll Dlz D13 Dl4 D15 DlG ] gx
Dy Dy Dy Dy Dy g,
g Dy Dy Dy Dy
L= D44 D45 D46 % (4.12)
¢ X D55 D56 7/ N
T, Dy, Yy
- x

Further, a material that exhibits symmetry with respect to three mutually orthogonal planes is
called an "orthotropic” material. If the Xy, yz and zx planes are considered planes of
symmetry, then equation (4.11) reduces to 12 elastic constants as below.

o, D, D, D 0 0 0 &,
o, D, b, D, 0O 0 O g,
o _ D, Db, D, 0 0 O g, (413)
Ty o o o Db, O O Yy
T, 0 0 0 0 Dg O Yy
Ty |0 0 0 0 0 Dgl| (ru

Also, due to orthotropic symmetry, the number of material constants for a linear elastic
orthotropic material reduces to 9 as shown below.
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Ox _Du D, Dy 000 1 (8
o, D, Dy, 000 gy
o, D, 000 g, (4.14)
Ty | Dy 00 | |7y
Ty, D, 0 Yy
T L Dee_ Y x

Now, in the case of a transversely isotropic material, the material exhibits a rationally elastic
symmetry about one of the coordinate axes, X, Y, and z. In such case, the material constants
reduce to 8 as shown below.

- D, DD, 0 0 0]y
o, D, D, 0 0 0 g
o D, 0 0 0 €z
@-0) 0 0|y,
Ty Symmetry D, 0] (%
T D,| Ux

(4.15)
Further, for a linearly elastic material with cubic symmetry for which the properties along
the X, y and z directions are identical, there are only 3 independent material constants.
Therefore, the matrix form of the stress — strain relation can be expressed as:

Oy D11 D12 D12 0 0 01 &,
5, D, D, 0 0 0 [
| D, 0 0 0 |g
7, B D, 0 O Vg
7, Symmetry D, 0 Vye
Tpy i D44J Vi

(4.16)

4.1.3 ISOTROPY

For a material whose elastic properties are not a function of direction at all, only two
independent elastic material constants are sufficient to describe it’s behavior completely.
This material is called "Isotropic linear elastic”. The stress- strain relationship for this
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material is thus written as an extension of that of a transversely isotropic material
as shown below.

0 0 0

Ox Dy Dy, D, 0 0 0 &y

Oy Dy D, &y
0 0 0

o, _ Dll 1 0 0 g,

Ty " (D11 - DlZ) Yy
2 1 0

7, | |Symmetry ~(D, -Dy,) Vye
2 1

T, E (D11 - DlZ) Y

(4.17)
Thus, we get only 2 independent elastic constants.

1
Replacing D,, and E(D11 - Dlz) respectively by A and G which are called "Lame’s

constants”, where G is also called shear modulus of elasticity, equation (4.17) can be written
as:

Oy [2G + A A A 0 O 0] |&x
o, 2G+ A A 0 0 01|y
o, 2G+ A 0 O 01 |e,
= 4.18
Ty G O 0 | |7y (4.18)
T, Symmetry G 0 Y e
TZX = G— }/ZX
Therefore, the stress-strain relationships may be expressed as
ox| [ 2G+A A A 0 0 O] |é
oy A 2G +4 A 0O 0 O (&
o, | A A 2G+ 4 0O 0 0] |le (419)
Ty 0 0 0 G 0 0 |7y '
T, 0 0 0 0 G O Y v
.| L 0 0 0 0 0 Gj] ¥y
Therefore,
0, =(2G+2) e, +Ale, +e¢,)
o, =(2G+2)e, +Ale, +¢,)
o, =(2G + 1), + Ale, +¢,) (4.20)
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Also, 7,, =Gy,

7, =Gy,

TZX=G?/ZX
Now, expressing strains in terms of stresses, we get
* G(BA+2G) * 2G(BA+2G) Y 7
P e N
Y G(B1+2G) Y 2G6(3A+2G) ¢
E, = /1+G o, — /1 ((7 +G)
© G(BA+2G) T 2G(3A+2G) ¢ !

T
Ve = éy

T
Yy = é

T
m—é

Now consider a simple tensile test

Therefore,
o, A+G
Ey= — = —————— O
E G(31+2G)
1 A+G
or -
E G(B1+206)
or _ G(B1+2G)
(A+G)
where E = Modulus of Elasticity
Also,

GX
§=-vg=-Vv—
E

Oy

§=-Vg=-V

where v = Poisson’s ratio

For o, = o, = 0, we get from equation (4.21)
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(4.21)

(4.22)
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A 1%

Ox — —— Ox

" 2G(3 +2G) E

A
~ 2G(31+26G)

Substituting the value of E from equation (4.22), we get

v(1+G) _ A
G(3A+2G)  2G(31+2G)

Therefore, 2v (A+G) = 4

Therefore, % (4.23)

or v=__* (4.24)
2(1+G)

Solving for A from equations (4.22) and (4.23), we get

,=G@G-E) _ 4G
(E-36) (E-6Gv)

E
2(1+v)

or G=

(4.25)

For a hydrostatic state of stress, i.e., all round compression p,

Gx = Gy = GZ = 'p
Therefore, g+g+¢, = LEZV)F)
E(e, +e, +¢,)

o P TR0

=G+ 22 Yot
or -p=K(&tgte)
Hence, K = (l + %) (4.26)
where K = Bulk modulus of elasticity.

Also,
- p =K (8x+5y+gz)

vl —3p-2v)
_p’K[ £ }
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or E=K[31-2v)]

E
Therefore, K= ——— (4.27)

3(1-2v)
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