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Module : 4 Stress-Strain Relations               
 

4.1.1    INTRODUCTION 

n the previous chapters, the state of stress at a point was defined in terms of six 
components of stress, and in addition three equilibrium equations were developed to relate 

the internal stresses and the applied forces. These relationships were independent of the 
deformations (strains) and the material behaviour. Hence, these equations are applicable  
to all types of materials.  

Also, the state of strain at a point was defined in terms of six components of strain.  These 
six strain-displacement relations and compatibility equations were derived in order to relate 
uniquely the strains and the displacements at a point.  These equations were also independent 
of the stresses and the material behavior and hence are applicable to all materials.  

Irrespective of the independent nature of the equilibrium equations and strain-displacement 
relations, in practice, it is essential to study the general behaviour of materials under applied 
loads including these relations. This becomes necessary due to the application of a load, 
stresses, deformations and hence strains will develop in a body. Therefore in a general  
three-dimensional system, there will be 15 unknowns namely 3 displacements, 6 strains and 
6 stresses.  In order to determine these 15 unknowns, we have only 9 equations such as 3 
equilibrium equations and 6 strain-displacement equations. It is important to note that the 
compatibility conditions as such cannot be used to determine either the displacements or 
strains.  Hence the additional six equations have to be based on the relationships between six 
stresses and six strains.  These equations are known as "Constitutive equations" because they 
describe the macroscopic behavior of a material based on its internal constitution.  
 
4.1.2    LINEAR  ELASTICITY-GENERALISED HOOKE’S LAW  

There is a unique relationship between stress and strain defined by Hooke’s Law, which is 
independent of time and loading history. The law assumes that all the strain changes 
resulting from stress changes are instantaneous and the system is completely reversible and 
all the input energy is recovered in unloading.  

In case of uniaxial loading, stress is related to strain as 

xx Ees =                                (4.0) 

where E is known as "Modulus of Elasticity". 

The above expression is applicable within the linear elastic range and is called  
Hooke’s Law. 

In general, each strain is dependent on each stress. For example, the strain xe  written as a 

function of each stress is 

I 
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xe = C11 xs + C12 ys + C13 zs + C14 xyt + C15 yzt + C16 zxt + C17 xzt + C18 zyt + C19 yxt                     

                                                                              (4.1) 

Similarly, stresses can be expressed in terms of strains stating that at each point in a material, 
each stress component is linearly related to all the strain components. This is known as 
"Generalised Hook’s Law". 

For the most general case of three-dimensional state of stress, equation (4.0) can be written 
as 

{ } ( ) { }klijklij D es =                             (4.2) 

where    ( )ijklD = Elasticity matrix 

  { }ijs = Stress components 

  { }kle  = Strain components 

Since both stress ijs  and strain ije  are second-order tensors, it follows that ijklD  is a fourth 

order tensor, which consists of 34 = 81 material constants if symmetry is not assumed. 
Therefore in matrix notation, the stress-strain relations would be   

 

Now, from jiij ss =  and jiij ee =  the number of 81 material constants is reduced to 36 

under symmetric conditions of jilkijlkjiklijkl DDDD ===   

Therefore in matrix notation, the stress – strain relations can be 
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Equation (4.4) indicates that 36 elastic constants are necessary for the most general form of 
anisotropy (different elastic properties in all directions). It is generally accepted, however, 
that the stiffness matrix ijD  is symmetric, in which case the number of independent elastic 

constants will be reduced to 21. This can be shown by assuming the existence of a strain 
energy function U. 

It is often desired in classical elasticity to have a potential function 

( )ijUU e=                                                               (4.5) 

with the property that  

ij
ij

U s
e

=
¶
¶

                                                     (4.6)   

Such a function is called a "strain energy" or "strain energy density function". 

By equation (4.6), we can write 

jiji
i

D
U es
e

==
¶
¶

                          (4.7)  

Differentiating equation (4.7) with respect to je , then 

ij
ji

D
U

=
¶¶

¶
ee

2

                                                       (4.8)       

The free index in equation (4.7) can be changed so that  

ijij
j

D
U es
e

==
¶
¶

                                       (4.9) 

Differentiating equation (4.9) with respect to ie , then, 
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2

                                                         (4.10) 
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Hence, equations (4.8) and (4.10) are equal, or jiij DD =  

which implies that ijD  is symmetric. Then most general form of the stiffness matrix or  

array becomes  

Or 
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           (4.12) 

 
Further, a material that exhibits symmetry with respect to three mutually orthogonal planes is 
called an "orthotropic" material. If the xy, yz and zx planes are considered planes of 
symmetry, then equation (4.11) reduces to 12 elastic constants as below.  

 
Also, due to orthotropic symmetry, the number of material constants for a linear elastic 
orthotropic material reduces to 9 as shown below.  
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          (4.14) 

Now, in the case of a transversely isotropic material, the material exhibits a rationally elastic 
symmetry about one of the coordinate axes, x, y, and z. In such case, the material constants 
reduce to 8 as shown below.         
  

                  (4.15) 
Further, for a linearly elastic material with cubic symmetry for which the properties along 
the x, y and z directions are identical, there are only 3 independent material constants. 
Therefore, the matrix form of the stress – strain relation can be expressed as: 
 

                (4.16) 
 
4.1.3    ISOTROPY  
 
For a material whose elastic properties are not a function of direction at all, only two 
independent elastic material constants are sufficient to describe it’s behavior completely. 
This material is called "Isotropic linear elastic". The stress- strain relationship for this 
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material is thus written as an extension of that of a transversely isotropic material  
as shown below. 
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                                                                                                                                           (4.17) 
Thus, we get only 2 independent elastic constants. 

Replacing 12D  and ( )1211
2

1
DD -  respectively by l and G which are called "Lame’s 

constants", where G is also called shear modulus of elasticity, equation (4.17) can be written 
as: 
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              (4.18) 

Therefore, the stress-strain relationships may be expressed as 
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Therefore, 

xs  = ( )l+G2 xe + ( )zy eel +   

 ( ) ( )xzyy G eelels +++= 2      

( ) ( )yxzz G eelels +++= 2                                                                              (4.20) 
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Also, xyxy Ggt =  

          yzyz Ggt =     

           zxzx Ggt =                       

Now, expressing strains in terms of stresses, we get  

( ) ( ) ( )zyxx GGGG
G
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l
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s
l
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e +
+

-
+
+

=
23223
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( ) ( ) ( )yxzz GGGG
G ss

l
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l
le +

+
-

+
+

=
23223

                 (4.21) 

G
xy

xy

t
g =  

G
yz

yz

t
g =  

G
zx

zx

t
g =                        

Now consider a simple tensile test 

Therefore,   

       xe = 
E

xs  = 
)23( GG

G
+
+
l
l

 sx 

  or           
E
1

 = 
)23( GG

G
+
+
l
l

  

  or            E = 
)(

)23(
G

GG
+
+

l
l

                            (4.22) 

where E = Modulus of Elasticity 

Also,  

ey = - nex = - n 
E

xs  

ez = - nex = - n 
E

xs  

where n = Poisson’s ratio 

For sy = sz = 0, we get from equation (4.21) 
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)23(2 GG +
-

l
l

  sx  = 
E
n

-    sx 

Therefore, 
E
n

   = 
)23(2 GG +l

l
                    (4.23) 

Substituting the value of E from equation (4.22), we get 

  
)23(

)(
GG

G
+
+

l
ln

 = 
)23(2 GG +l

l
    

Therefore, 2n (l+G) = l 

             or   n  = 
)(2 G+l

l                                     (4.24) 

Solving for l from equations  (4.22) and (4.23), we get 

 l = 
)3(
)2(

GE
EGG

-
-  = ( )n

n
GE

G
6

4 2

-
 

or     G = 
)1(2 n+

E
                         (4.25) 

For a hydrostatic state of stress, i.e., all round compression p,  

sx = sy = sz = -p 

Therefore, ex+ey+ez = 
E

p)21(3 n--
 

or     -p =  
)21(3

)(

n
eee

-

++ zyxE
 

            = (l + 
3

2G
 )(ex+ey+ez) 

or     -p = K (ex+ey+ez)   

Hence, K = ÷
ø
ö

ç
è
æ +

3
2Gl                                  (4.26) 

where K = Bulk modulus of elasticity. 
Also,  
  - p = K (ex+ey+ez) 
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      or     ( )[ ]vKE 213 -=   

Therefore, K = 
)21(3 n-

E
                           (4.27) 


