Module6/Lesson2

Module 6: Two Dimensional Problems in Polar
Coordinate System

6.2.1 AXISYMMETRIC PROBLEMS

Many engineering problems involve solids of revolution subjected to axially symmetric
loading. The examples are a circular cylinder loaded by uniform internal or external
pressure or other axially symmetric loading (Figure 6.4a), and a semi-infinite half space
loaded by a circular area, for example a circular footing on a soil mass (Figure 6.4b). It is
convenient to express these problems in terms of the cylindrical co-ordinates. Because of

symmetry, the stress components are independent of the angular () co-ordinate; hence, all
derivatives with respect to @ vanish and the components V, %4 Y& %o and 7, are zero.
The non-zero stress components are o;,04,, 0; and ;.

The strain-displacement relations for the non-zero strains become

ou u ow
&= &y =—,&, =——
or r 0z
ou ow
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and the constitutive relation is given by
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Z,W

(a) Cylinder under axisymmetric loading

(b) Circular Footing on Soil mass

Figure 6.4 Axisymmetric Problems
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6.2.2 THICK-WALLED CYLINDER SUBJECTED TO INTERNAL AND
EXTERNAL PRESSURES

Consider a cylinder of inner radius ‘a’ and outer radius ‘b’ as shown in the figure 6.5.

Let the cylinder be subjected to internal pressure p, and an external pressure p,.

This problem can be treated either as a plane stress case (o, = 0) or as a plane strain
case (g = 0).

Case (a): Plane Stress

pD pO
b
5 SXI
o
(a) (b) (c)

Figure 6.5 (a) Thick-walled cylinder (b) Plane stress case (c) Plane strain case

Consider the ends of the cylinder which are free to expand. Let o, = 0. Owing to uniform
radial deformation, 7, = 0. Neglecting the body forces, equation of equilibrium reduces to

oo, +(0f _GeJ:o (6.20)
or r

Here o, and o, denote the tangential and radial stresses acting normal to the sides of the
element.

Since r is the only independent variable, the above equation can be written as
d
—(ro,)-0, =0 (6.21)

dr
From Hooke’s Law,

1 1
6= £(0,7v0)), &= 2 (0, ~vo))
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du u . .
Therefore, & = d_ and gy = — or the stresses in terms of strains are
r

(&, +vey)

I'=

@-v?)
E
Op= ——— (&, +ve
0 (1_ vz) ( 0 r)
Substituting the values of & and & in the above expressions, we get

d( du u du
—|r—+w|—-|—+v—[=0
dr\ dr r dr
du d’u du u du
—+r—+v 1%
dr dr dr r dr
d’u 1du u
r
dr> rdr r?
The above equation is called equidimensional equation in radial displacement. The solution
of the above equation is

u= Clr + Cz/r (622)
where C; and C, are constants.

The radial and tangential stresses are written in terms of constants of integration C; and C.,.

Therefore,
E 1-v
o= — | C,(l+v)-C,| —
(1—v2)[ ) ( r’ ﬂ
E 1-v
op= —— | C,l+v)+C,| — 6.23
o) .
The constants are determined from the boundary conditions.
when r=a, o= — P,
r= b, or=—P, (6233.)
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Hence, - £ 2){cl(1+v)—c2(1;—zvﬂ= -p

-V

and E{Cl(lJrv)—Cz(l_vﬂ: — Po

(1-v?) b’
where the negative sign in the boundary conditions denotes compressive stress.
The constants are evaluated by substitution of equation (6.23a) into (6.23)

C - [1—vj(a2pi —prOJ
E |\ 0 -a)

C - (1+vj(a2b2(pi - po)J
E (b? —a?)

Substituting these in Equations (6.22) and (6.23), we get

2 2 21\ 2
o = [a p;—bzpol_((piz—poza ? ] (6.24)
b —a (b —a)r
_(@*p—b%py |, [ (P — po)a’h’
Op= [ b? — a2 ]"‘[ (bz _az)rz J (6.25)
U= (1—\/)(& piz_b Zpo)r +(1+Vj(pi ; po)za b (6.26)
E (b2 —a?) E ) (b®-a)r

These expressions were first derived by G. Lambe.

It is interesting to observe that the sum (o; + oy) is constant through the thickness of the wall
of the cylinder, regardless of radial position. Hence according to Hooke’s law, the
stresses o; and oy produce a uniform extension or contraction in z-direction.
The cross-sections perpendicular to the axis of the cylinder remain plane. If two adjacent
cross-sections are considered, then the deformation undergone by the element does not
interfere with the deformation of the neighbouring element. Hence, the elements are
considered to be in the plane stress state.

Special Cases

(1) A cylinder subjected to internal pressure only: In this case, p, =0and p, = p.
Then Equations (6.24) and (6.25) become

pa’ b®
- _Pa [, D 6.27
i (b2 _ aZ) ( r2 J ( )
_ paZ b2
5
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Figure 6.6 shows the variation of radial and circumferential stresses across the thickness of
the cylinder under internal pressure.

Figure 6.6 Cylinder subjected to internal pressure

The circumferential stress is greatest at the inner surface of the cylinder and is given by
2 2
a“+b
(CB)max = % (6.29)
(ii) A cylinder subjected to external pressure only: In this case, p, =0and p, = p.

Equation (6.25) becomes

2 2

o =- (bzpi’az ](1_";‘_2] (6.30)
2 2

Gy = - (bzpi’az ](H?_ZJ (6.31)

Figure 6.7 represents the variation of o; and oy across the thickness.

However, if there is no inner hole, i.e., if a = 0, the stresses are uniformly distributed in the
cylinder as

Grzaez'p
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Figure 6.7 Cylinder subjected to external pressure

Case (b): Plane Strain

If a long cylinder is considered, sections that are far from the ends are in a state of plane
strain and hence o, does not vary along the z-axis.

Now, from Hooke’s Law,

&= é[o-r _V(GG +0, )]
&= l[o_e _V(O-r +0, )]
E
1
&= E[Gz _V(Gr +0y )]
Since g, = 0, then

1
0= E[O'Z —v(ar +09)]
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0, = v (or+0oy)

Hence,

o= L 1-v)o, -vo, ]

o= E1-v, -vo,]

Solving for oy and o,

- E _
oy= - 2)0) [ve, +(1-v)e,]
o #[(1—1/)& +V89]

T 1—20)(1+v)

Substituting the values of & and &g, the above expressions for o, and o, can be written as

o #[vd—u+(l—v)£}

T d—2n)1+v)| ar r

r

o, = #[(1_v)d_u+ﬂ:l
1-2v)(1+v) dr r

Substituting these in the equation of equilibrium (6.21), we get

i{(1—v)rd—u+vu}—vd—u—(1—V)E=O
dr dr dr r
du d°u u
o —+r—-—=0
dr dr r
d?u 1du u

The solution of this equation is the same as in Equation (6.22)
u=Cir+C,Ir

where C; and C, are constants of integration. Therefore, o, and o; are given by

oo #{01 +(1- 2v)%}

T d-20)(1+v)
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o= —c o -(-w)2
@-2v)1+v) r
Applying the boundary conditions,
or=—p; whenr=a
or=— P, whenr=D
Therefore, B C, - (1_ 2\/)0_22 =—p,
@-2v)1L+v) a

L—2v)(L+V)

- |:C1 _(1_2V)C_22} =P
b
Solving, we get

1-2v)A+v)( p,b® —p,a°
C. = 2 2
E a‘—b

_n.)a2p2
and (1+v)[(po p)a‘h )
E a“-b

Substituting these, the stress components become

pia’ = pb* ) (pi—p, \a’h’
o = ( o _ag J_(bz _agj r2 (6.32)
a?— p,b? - p, \ah?
agz[pbz_;’g j{gz_zg] = (6.33)
2 2
0= 2y (pb_pbj (6:34)

It is observed that the values of o; and oy are identical to those in plane stress case. But in

plane stress case, o; = 0, whereas in the plane strain case, o, has a constant value given by
equation (6.34).
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6.2.3 ROTATING DISKS OF UNIFORM THICKNESS

The equation of equilibrium given by

da“+[ar;69J+Fr=0 (a)

dr

is used to treat the case of a rotating disk, provided that the centrifugal "inertia force" is
included as a body force. It is assumed that the stresses induced by rotation are distributed
symmetrically about the axis of rotation and also independent of disk thickness.
Thus, application of equation (a), with the body force per unit volume F, equated to the

centrifugal force pw?r, yields

do o, -0, 2
: : r=0 6.35
(2% )+ 639

where p is the mass density and w is the constant angular speed of the disk in rad/sec. The
above equation (6.35) can be written as

d
d—(rar) —o, +pWr’ =0 (6.36)
r

But the strain components are given by

&= d_u and &= u (6.37)
dr r

From Hooke’s Law, with o, =0
1

&= E(ar -vo,) (6.38)
1

Ep= E(O'Q —VO'r) (639)

From equation (6.37),

U=regy

du d

— =g=—/(re

dr dr (réy)

Using Hooke’s Law, we can write equation (6.38) as

1 1|d

—(o, —vo,)=—|—(ro, —vro 6.40

(0, -vo) = £ | 41, =) (640

Letro, =Yy (6.41)

Then from equation (6.36)

oy = Y, pwr? (6.42)
dr

10
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Substituting these in equation (6.40), we obtain
2
2 d—2/+ rﬂ— y+@+v)+pw’r® =0
dr dr

The solution of the above differential equation is

y=Cr+C, [EJ_(3+Vij2r3 (6.43)
r

r

8
From Equations (6.41) and (6.42), we obtain

6.=C+C, [r—lzj—(&;vjpwzrz (6.44)

6,=C-C, (r—]'zj—(l+3vjpwzr2 (6.45)

8

The constants of integration are determined from the boundary conditions.

6.2.4 SOLID DISK

For a solid disk, it is required to take C; = 0, otherwise, the stresses o, and oy becomes
infinite at the centre. The constant C is determined from the condition at the periphery
(r = b) of the disk. If there are no forces applied, then

(Gr)r=b =C- [3;VJPW2b2 =0

Therefore, C = (3 ; 4 jpwzb2 (6.46)
Hence, Equations (6.44) and (6.45) become,

.= [3;Vjpw2(b2 —r?) (6.47)
= 3+v WP 1+3v T (6.48)

8 8
The stresses attain their maximum values at the centre of the disk, i.e., at r = 0.
3+v 22
Therefore, oy = G- 3 owb (6.49)
11
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Let a = Radius of the hole.

If there are no forces applied at the boundaries a and b, then
(0)==0, (0)==0

from which we find that

c= [3;V)pw2(b2 +a?)

3+v

and C, = - ( j,owzazb2

Substituting the above in Equations (6.44) and (6.45), we obtain

212
(el
8 r
21n2
= [3+v]pw2 b2 1al 4 a E) _(1+3v]r2
8 r 3+v

The radial stress o; reaches its maximum at r = +/ab , where

3+v
8

(OV)max = ( Jpwz(b—a)z

The maximum circumferential stress is at the inner boundary, where

_(3+vVv of Lo 1-v),
(Ue)max—( 4 ij [b +(3+vJaj

The displacement U, for all the cases considered can be calculated as below:

r
U =rg= E(Ge -vo,)

6.2.6 STRESS CONCENTRATION

Module6/Lesson2

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

While discussing the case of simple tension and compression, it has been assumed that the
bar has a prismatical form. Then for centrally applied forces, the stress at some distance from
the ends is uniformly distributed over the cross-section. Abrupt changes in cross-section give
rise to great irregularities in stress distribution. These irregularities are of particular
importance in the design of machine parts subjected to variable external forces and to
reversal of stresses. If there exists in the structural or machine element a discontinuity that
interrupts the stress path, the stress at that discontinuity may be considerably greater than the
nominal stress on the section; thus there is a “Stress Concentration” at the discontinuity.
The ratio of the maximum stress to the nominal stress on the section is known as the

12
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'Stress Concentration Factor'. Thus, the expression for the maximum normal stress in a
centrically loaded member becomes

=)
oo K(Xj (6.55)

where A is either gross or net area (area at the reduced section), K = stress concentration
factor and P is the applied load on the member. In Figures 6.8 (a), 6.8(b) and 6.8(c), the type
of discontinuity is shown and in Figures 6.8(d), 6.8(e) and 6.8(f) the approximate distribution
of normal stress on a transverse plane is shown.

Stress concentration is a matter, which is frequently overlooked by designers. The high stress
concentration found at the edge of a hole is of great practical importance. As an example,
holes in ships decks may be mentioned. When the hull of a ship is bent, tension or
compression is produced in the decks and there is a high stress concentration at the holes.
Under the cycles of stress produced by waves, fatigue of the metal at the overstressed
portions may result finally in fatigue cracks.

13
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Figure 6.8 Irregularities in Stress distribution
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CIRCULAR HOLES ON STRESS
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DISTRIBUTIONS IN PLATES

Figure 6.9 Plate with a circular hole

Consider a plate subjected to a uniform tensile stress P as shown in the Figure 6.9. The plate
thickness is small in comparison to its width and length so that we can treat this problem as a
plane stress case. Let a hole of radius 'a’' be drilled in the middle of the plate as shown in the
figure. This hole will disturb the stress field in the neighbourhood of the hole. But from
St.Venant's principle, it can be assumed that any disturbance in the uniform stress field will
be localized to an area within a circle of radius 'b". Beyond this circle, it is expected that the
stresses to be effectively the same as in the plate without the hole.

Now consider the equilibrium of an element ABC at r = b and angle € with respect to

X-axis.
.o, =P.BC [ﬁJ
AC
=P.cos? 6

Lo, = 2(1+ 0s26)

and 7, = —P.BC(%)
=—P.sin@ coso
STy = —gsin 20

Applied Elasticity for Engineers
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These stresses, acting around the outside of the ring having the inner and outer radii r = a
and r = b, give a stress distribution within the ring which may be regarded as consisting of
two parts.

(a) A constant radial stress E at radius b. This condition corresponds to the ordinary thick

cylinder theory and stresses o, and o, at radius r is given by

o, = A+(Ezjand Oy = A—[Ezj
r r
Constants A and B are given by boundary conditions,
() Atr=a,o, =0
(i) Atr=>h, o, :2

On substitution and evaluation, we get
, Pb? a’
ey | Ky
2(b° —a r

o, = b’ (1+ ij
(b) The second part of the stress o, and o, are functions of 6. The boundary conditions
for this are:

af:gcosw forr=b

T/, = —(Ejsin 20 forr=b
2

These stress components may be derived from a stress function of the form,
¢ = f(r)cos26
because with

e
r2)oe6* \r)or

and (7” — [i}%_[lJﬁ
“ \r2)oeo \r)oroo

Now, the compatibility equation is given by,
0> 10 1 ¢°

POr I  NNr Ry
orc ror r°o0

2 2

But % f(r)cos 26 +%§ f (r)cos 26 +ri288_02 f(r)cos26

]f(r)cosZG =0

16
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~eos20| £ 1)1 2 000 K100

ror r
Therefore, the compatibility condition reduces to

o 1o 4)°
c0s20 —+—-————=1 f(r)=0
{ar2 r or rz} r)

As €0S26 is not in general zero, we have
2
o 10 4
—+—.——— f(r)=0
{ar2 ror rz} ")
We find the following ordinary differential equation to determine f(r)

. d?> 1d 4| [d*°f 1df 4f
e s—m+———p 33—+ —— =0
dr? rdr r?| |dr® rdr r?

ie.,
d'f 1d% 2df 2d°f 4d°f 16df 24f 1d°f 1d°f 1
dr* rdr® rdr o r?dr? r?2dr® rPdr r* rdr® r?dr? r®

ﬂ_iﬂﬂ 4 d*f 4df+16f_
dar r*dr r* r*dr* r*dr r*
d*f 2d3f 9 d*f 9 df
+— -— +——-=
dr* rdr® r®dr®> r*dr
This is an ordinary differential equation, which can be reduced to a linear differential

equation with constant co-efficients by introducing a new variable t such that r =e".
df df dt 1df

s0O,—=——=——
dr dtdr radt

d?f 1 (d*f df

dr® r?{ dt* dt

d®f  1(d°f _d°f _df
T a| e S T2

dr re dt dt dt

d*f 1(d“f_6d3f d’f de

0

or 0

Al

drt  r*{ dt? dt® dt? dt

on substitution, we get

4 3 2 3 2 2
1(d f_6d f+11d f—6£ +£ d f_3d f+2g _ 9 (d*f df +9(dfj:0
r*{ dt* dt® dt? dt ) r*{ dt® dt? dt | r*{ dt?> dt) r*\dt
4 3 2
f f f f
or d " —4d 3 —4d 5 +16d—:0
dt dt dt dt

17
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Let ﬂ: m
dt

~m* —4m® —4m? +16m =0
m3*(m-4)-4m(m-4)=0

- (m=4)(m*-4m)=0

or m(m? —4)(m—-4)=0

~m=0,m=+2, m=4

. f(r)=Ae* +Be* +Ce™? +D

L f(r)= Ar2+Br“+f—2+D

The stress function may now be written in the form:

¢:(Ar2 +Br* +::—2+ DJCOSZQ

The stress components o, and o, may now expressed as

{222
r2)o6* \r)or

ol = —[2A+$+£jcosze
r r
0%
and o, =—-
° or?

Sop = [2A+128r2 +$jcos 20
r

2
mi e, (L]0 (1) 24
r-)oo r<)oroé
STy = (2A+ 6Br? —g—gjsin 20
r r
The boundary conditions are,

(@ Atr=a, o/ =0

(b) At r=h, a;':gcosw

(© Atr=b, /= —gsin 20

(d Atr=a,r;, =0

Therefore, we have on substitution in stress components,

Applied Elasticity for Engineers
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2A+£+£:0
a a
2A+$+£:—E
b b 2
2A+6Ba’ —6—?—£=0
a a
nsept-8C_20__P
b b 2

Solving the above, we get

Pa’b?
B=—f 22
L(az —bz)s}

If ‘a’ is very small in comparison to b
Now, taking approximately,

2
D:aP

{3

, we may write B =0

Module6/Lesson2

Therefore the total stress can be obtained by adding part (a) and part (b). Hence, we have

r

2 r

2
L I i
2 r 2
E 1_£+2;32
2 r* r?

Now, At r=a, o, =0

Gy =0y, +69 =

and 7, =17/, = —

.o, =P-2Pcos20
3

When 0 = ZOr
2 2

o, =3P

Applied Elasticity for Engineers

r

2 4 2
o, =0cl +o! =E(1—a—2]+3(1+314—4a—2]c0329
2 r

4

+ 3%} C0s 20
r

jsin 20
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When § =00r @ =r
o, =—P

Therefore, we find that at points m and n, the stress o, is three times the intensity of applied

stress. The peak stress 3P rapidly dies down as we move fromr=ator =bsinceat 8 = %

P a’ 3a‘
69 ZE 2+r—2+r—4

which rapidly approaches P as r increases.

From the above, one can conclude that the effect of drilling a hole in highly stressed element
can lead to serious weakening.

Now, having the solution for tension or compression in one direction, the solution for tension
or compression in two perpendicular directions can be obtained by superposition. However,
by taking, for instance, tensile stresses in two perpendicular directions equal to p, we find at
the boundary of the hole a tensile stress o, =2p. Also, by taking a tensile stress p in the

x-direction and compressive stress —p in the y-direction as shown in figure, we obtain the
case of pure shear.

Figure 6.10 Plate subjected to stresses in two directions

20
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Therefore, the tangential stresses at the boundary of the hole are obtained from
equations (a), (b) and (c).

ie, o, =p—2pcos20—[p-2pcos(20 - )]
For 6 :% or 6 = 377[ that is, at the points n and m,
Oy :4p

For =0 or 0 =, thatis, at the points N andM,, o, =—4p

Hence, for a large plate under pure shear, the maximum tangential stress at the boundary of
the hole is four times the applied pure shear stress.
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