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Module: 7 Torsion of Prismatic Bars       
 
7.1.1    INTRODUCTION   

rom the study of elementary strength of materials, two important expressions related to 
the torsion of circular bars were developed.  They are 

 t = 
J

rM t                   (7.1) 

and       q = 
GJ

dzM

L
t

Lò
1

                 (7.2) 

Here t represents the shear stress, Mt the applied torque, r the radius at which the stress is 

required, G the shear modulus, q the angle of twist per unit longitudinal length, L the length, 
and z the axial co-ordinate. 

Also, J = Polar moment of inertia which is defined by A
A
ò dr 2  

The following are the assumptions associated with the elementary approach in deriving (7.1) 
and (7.2). 

1. The material is homogeneous and obeys Hooke’s Law.            

2. All plane sections perpendicular to the longitudinal axis remain plane following the 
application of a torque, i.e., points in a given cross-sectional plane remain in that plane after 
twisting. 

3. Subsequent to twisting, cross-sections are undistorted in their individual planes, i.e., the 
shearing strain varies linearly with the distance from the central axis. 

4. Angle of twist per unit length is constant. 

In most cases, the members that transmit torque, such as propeller shaft and torque tubes of 
power equipment, are circular or turbular in cross-section.  

But in some cases, slender members with other than circular cross-sections are used.  These 
are shown in the Figure 7.0. 
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Figure 7.0  Non-Circular Sections Subjected to Torque 

While treating non-circular prismatic bars, initially plane cross-sections [Figure 7.0 (a)] 
experience out-of-plane deformation or "Warping" [Figure 7.0(b)] and therefore assumptions 
2. and 3. are no longer appropriate.  Consequently, a different analytical approach is 
employed, using theory of elasticity.  
 

7.1.2    GENERAL SOLUTION OF THE TORSION PROBLEM 

The correct solution of the problem of torsion of bars by couples applied at the ends was 
given by Saint-Venant.  He used the semi-inverse method. In the beginning, he made certain 
assumptions for the deformation of the twisted bar and showed that these assumptions could 
satisfy the equations of equilibrium given by  
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and the boundary conditions such as 

X  = sx l + txym + txzn 

Y  = sym+ tyzm + txy l  

Z  = szn+ txz l + tyzm 

in which Fx, Fy, Fz are the body forces, X, Y, Z are the components of the surface forces per 
unit area and l, m, n are the direction cosines.  
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Also from the uniqueness of solutions of the elasticity equations, it follows that the torques 
on the ends are applied as shear stress in exactly the manner required by the  
solution itself.  

Now, consider a prismatic bar of constant arbitrary cross-section subjected to equal and 
opposite twisting moments applied at the ends, as shown in the Figure 7.1(a).  

 

 

 

Figure 7.1 Bars subjected to torsion 

 
Saint-Venant assumes that the deformation of the twisted shaft consists of  

1. Rotations of cross-sections of the shaft as in the case of a circular shaft and  

2.  Warping of the cross-sections that is the same for all cross-sections.  

The origin of x, y, z in the figure is located at the center of the twist of the cross-section, 
about which the cross-section rotates during twisting.  Figure 7.1(b) shows the partial end 
view of the bar (and could represent any section).  An arbitrary point on the cross-section, 
point P(x, y), located a distance r from center of twist A, has moved to P¢ (x-u, y+v) as a 
result of torsion.  Assuming that no rotation occurs at end z = 0 and that q is small, the x and 
y displacements of P are respectively: 
u = - (rqz) sina 

But sina = ry /  

Therefore, u = -(rqz) y/r = -yqz                                              (a) 

Similarly, v = (rqz) cosa = (rqz) x/r = xqz                              (b) 

where qz is the angle of rotation of the cross-section at a distance z from the origin. 
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The warping of cross-sections is defined by a function y as  

w = q y (x, y)                                  (c) 

Here, the equations (a) and (b) specify the rigid body rotation of any cross-section through a 
small angle zq . However, with the assumed displacements (a), (b) and (c), we calculate the 
components of strain from the equations given below.  
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Substituting (a), (b) and (c) in the above equations, we obtain  

ex = ey = ez = gxy = 0 

gxz = y
x
w
-

¶
¶

q = ÷
ø
ö

ç
è
æ -

¶
¶ qyq y

x
 

or         gxz = ÷
ø
ö

ç
è
æ -
¶
¶

y
x
y

q  

and  gyz = x
y
w
+

¶
¶

q = ÷÷
ø

ö
çç
è

æ
+

¶
¶

q
y

q x
y

 

or         gyz = ÷÷
ø

ö
çç
è

æ
+

¶
¶

x
y
yq  

Also, by Hooke’s Law, the stress-strain relationships are given by  

sx = 2Gex + le ,     txy = Ggxy 

sy = 2Gey + le ,     tyz = Ggyz 

sz = 2Gez + le ,     txz = gxz 

where    e = ex + ey + ez 

and l = 
)21)(1( nn

n
-+
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Substituting (a), (b) and (c) in the above equations, we obtain 
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It can be observed that with the assumptions (a), (b) and (c) regarding deformation, there will 
be no normal stresses acting between the longitudinal fibers of the shaft or in the longitudinal 
direction of those fibers.  Also, there will be no distortion in the planes of  
cross-sections, since ex, ey and gxy vanish.  We have at each point, pure shear defined by the 
components txz and tyz. 

However, the stress components should satisfy the equations of equilibrium given by:  
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Assuming negligible body forces, and substituting the stress components into equilibrium 
equations, we obtain  
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Also, the function y (x, y), defining warping of cross-section must be determined by the 
equations of equilibrium.  

Therefore, we find that the function y  must satisfy the equation  
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Now, differentiating equation (d) with respect to y and the equation (e) with respect to x, and 
subtracting we get an equation of compatibility  
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Therefore the stress in a bar of arbitrary section may be determined by solving Equations 
(7.3) and (7.4) along with the given boundary conditions. 
 
7.1.3    BOUNDARY CONDITIONS  

Now, consider the boundary conditions given by  

X  = sx l + txy m + txzn 

Y  = sym+ tyzn + txy l  

Z  = szn+ txz l + tyzm 

For the lateral surface of the bar, which is free from external forces acting on the boundary 

and the normal n to the surface is perpendicular to the z-axis, we have  

X = Y = Z = 0 and n = 0.  The first two equations are identically satisfied and the third 
gives, 

txz l + yzt m = 0                                           (7.5) 

which means that the resultant shearing stress at the boundary is directed along the tangent to 
the boundary, as shown in the Figure 7.2. 

 

 

Figure 7.2 Cross-section of the bar & Boundary conditions 
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Considering an infinitesimal element abc at the boundary and assuming that S is increasing 
in the direction from c to a,  

= cos (N, x) = 
dS
dy

 

m = cos(N, y) = - 
dS
dx

 

\Equation (7.5) becomes 
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Thus each problem of torsion is reduced to the problem of finding a function y satisfying 

equation (7.3a) and the boundary condition (7.6).  
 
7.1.4    STRESS FUNCTION METHOD 

As in the case of beams, the torsion problem formulated above is commonly solved by 
introducing a single stress function.  This procedure has the advantage of leading to simpler 
boundary conditions as compared to Equation (7.6).  The method is proposed by Prandtl.   
In this method, the principal unknowns are the stress components rather than the 
displacement components as in the previous approach.  

Based on the result of the torsion of the circular shaft, let the non-vanishing components be 
tzx and tyz.  The remaining stress components sx, sy and sz and txy are assumed to be zero.  
In order to satisfy the equations of equilibrium, we should have  
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The first two are already satisfied since txz and tyz, as given by Equations (d) and (e) are 
independent of z.  

In order to satisfy the third condition, we assume a function f (x, y) called Prandtl stress 
function such that 

txz = 
y¶
¶f

,  tyz = 
x¶
¶

-
f

                                          (7.7) 

With this stress function, (called Prandtl torsion stress function), the third condition is also 
satisfied.  The assumed stress components, if they are to be proper elasticity solutions, have 
to satisfy the compatibility conditions.  We can substitute these directly into the stress 
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equations of compatibility.  Alternately, we can determine the strains corresponding to the 
assumed stresses and then apply the strain compatibility conditions. 

Therefore from Equations (7.7), (d) and (e), we have  
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Eliminating y by differentiating the first with respect to y, the second with respect to x, and 
subtracting from the first, we find that the stress function must satisfy the differential 
equation  
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where H = -2Gq 
The boundary condition (7.5) becomes, introducing Equation. (7.7) 
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This shows that the stress function f must be constant along the boundary of the cross-
section.  In the case of singly connected sections, example, for solid bars, this constant can 
be arbitrarily chosen.  Since the stress components depend only on the differentials of f, for 
a simply connected region, no loss of generality is involved in assuming f = 0 on S.  
However, for a multi-connected region, example shaft having holes, certain additional 
conditions of compatibility are imposed.  Thus the determination of stress distribution over a 
cross-section of a twisted bar is used in finding the function f that satisfies  
Equation (7.8) and is zero at the boundary.  

Conditions at the Ends of the Twisted bar 

On the two end faces, the resultants in x and y directions should vanish, and the moment 
about A should be equal to the applied torque Mt.  The resultant in the x-direction is 
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Therefore,  ò ò =dxdyxzt 0                           (7.10) 

Since f is constant around the boundary. Similarly, the resultant in the y-direction is   
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hence,  ò ò =dxdyyzt 0                                       (7.11) 

Thus the resultant of the forces distributed over the ends of the bar is zero, and these forces 
represent a couple the magnitude of which is 

Mt = ò ò - dxdyyx xzyz )( tt                            (7.12) 

     = - ò ò ¶
¶

+
¶
¶

dxdy
y

y
x

x )(
ff

 

Therefore,  
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Integrating by parts, and observing that f = 0 at the boundary, we get 

Mt = ò ò ò ò+ dxdydxdy ff                          (7.13) 

\ Mt = 2 ò ò dxdyf                                       (7.14) 

Hence, we observe that each of the integrals in Equation (7.13) contributing one half of the 
torque due to txz and the other half due to tyz. 

Thus all the differential equations and boundary conditions are satisfied if the stress function 
f obeys Equations (7.8) and (7.14) and the solution obtained in this manner is the exact 
solution of the torsion problem. 
 
7.1.5    TORSION OF CIRCULAR CROSS SECTION  

The Laplace equation is given by 
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where y  = warping function.  

The simplest solution to the above equation is  
 y  = constant = C 

But the boundary condition is given by the Equation (7.6) is  
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Therefore, with y  = C, the above boundary condition becomes  
(0-y) (dy/dS) – (0+x) (dx/dS) = 0 
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i.e.,    x2+y2 = constant 
where (x, y) are the co-ordinates of any point on the boundary. Hence the boundary  
is a circle.  

From Equation (c), we can write 
w = qy (x, y) 
i.e., w = qC 

The polar moment of inertia for the section is 
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which is a constant.  Since the fixed end has zero w at least at one point, w is zero at every 
cross-section (other than the rigid body displacement).  Thus the cross-section does not warp.  

Further, the shear stresses are given by the Equations (d) and (e) as  
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hence,  tyz = 
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Therefore, the direction of the resultant shear stress t is such that, from Figure 7.3  
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Figure 7.3 Circular bar under torsion 

Hence, the resultant shear stress is perpendicular to the radius. 

Further,  

t2 = t 2
yz + t 2

xz  
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t (x2+y2)/ 2
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or t = 22 yx
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Therefore, t = 
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or  t = 
J

rM t .  (since J = IP) 

where r is the radial distance of the point (x, y). Hence all the results of the elementary 
analysis are justified.  


