Module 8/Lesson 1

Module 8: Elastic Solutions and Applications
in Geomechanics

8.1.1 INTRODUCTION

Most of the elasticity problems in geomechanics were solved in the later part of
nineteenth century and they were usually solved not for application to geotechnical
pursuits, but simply to answer basic questions about elasticity and behavior of elastic bodies.
With one exception, they all involve a point load. This is a finite force applied at a point: a
surface of zero area. Because of stress singularities, understanding point-load problems will
involve limiting procedures, which are a bit dubious in regard to soils. Of all the point-load
problems, the most useful in geomechanics is the problem of a point load acting normal to
the surface of an elastic half-space.

The classical problem of Boussinesq dealing with a normal force applied at the
plane boundary of a semi-infinite solid has found practical application in the study of
the distribution of foundation pressures, contact stresses, and in other problems

of soil mechanics. Solutions of the problems of Kelvin, Flamant, Boussinesq, Cerrutti and
Mindlin related to point load are discussed in the following sections.

8.1.2 KELVIN'S PROBLEM

It is the problem of a point load acting in the interior of an infinite elastic body as shown in
the Figure 8.1.

Infinite elastic
body

Figure 8.1 Kelvin’s Problem
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Consider a point load of magnitude 2P acting at a point in the interior of an infinite
elastic body.

In the cylindrical coordinate system, the following displacements can be obtained by
Kelvin’s solution.

Displacement in radial direction = u, = LS
87G(1-v)R
Tangential displacement = uy =0
2
Vertical displacement = u, = P 2(1=2v) + l +Z—3 (8.1)
81G(1-v) R R R
Similarly, the stresses are given by
_ P @-2v)z 3r’z
" 4z(l-v)| R® R®
PQl-2v)z
o= =20
dr(1-v)R
P 1-2v)z 37°
o= d-2v)z 3z (8.2)
Ar(l-v) R R
P (1-2v)r 3rz°
Trz — 3 + 5
dr(l—v) R R

To=Tor = Top = T720=0
HereR= vz% +r?

It is clear from the above expressions that both displacements and stresses die out for larger
values of R. But on the plane z = 0, all the stress components except for 7, vanish, at all
points except the origin.

Vertical Tractions Equilibrating the applied Point Load

Consider the planar surface defined by z = + h, as shown in the Figure 8.2.
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|

Z

Figure 8.2 Vertical stress distributions on horizontal planes above and below point load

The vertical component of traction on this surface is o;. If we integrate o, over this entire
surface, we will get the resultant force. To find this resultant force, consider a horizontal
circle centered on the z-axis over which o is constant (Figure 8.3).

Therefore, the force acting on the annulus shown in Figure 8.3 will be o, x 2zardr.

Now, the total resultant force on the surface z = h is given by,

Resultant upward force = jwaz (27rdr)

= [ P [(1—2v)h 3h°

nd—v) + }(Zmdr)

RE  R°

-1 P_[@-2vh 30°]p gy
° 20-v)| R® R

To simplify the integration, introduce the angle y as shown in the Figure 8.2.
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Here

r=htany and dr=hsec?ydy

Therefore, Resultant upward force = J'm 2(1P ) [A—-2v)siny +3cos’ wsinyldy

° -V
Solving, we get resultant upward force on the lower plane = P which is exactly one-half the
applied load. Further, if we consider a similar surface z = — h, shown in Figure 8.2, we will

find tensile stresses of the same magnitude as the compressive stresses on the lower plane.

Hence, Resultant force on the upper plane = —P (tensile force). Combining the two resultant
forces, we get 2P which exactly equilibrate the applied load.

2P

—t

o dr

V4

Figure 8.3 Geometry for integrating vertical stress
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8.1.3 FLAMANT’S PROBLEM

Figure 8.4 shows the case of a line load of intensity ‘q’ per unit length acting on the surface
of a homogeneous, elastic and isotropic half-space.

X

¥ 5
j"_X

1 e

Figure 8.5 Stresses due to a vertical line load in rectangular coordinates
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The stresses at a point P (r, 6) can be determined by using the stress function

6= Lrosing (8.3)

T
In the polar co-ordinate system, the expressions for the stresses are as follows:

10¢ 1 0°¢

= -t
ror r?o0?

_%

or?
0 (1lo¢

=_ 2|27 8.6
fro 6r(r60j (89)
Now, differentiating Equation (8.3) with respect to r, we get

(8.4)

and oy (8.5)

%:ﬂesine
or =«
82¢

or?
Also, differentiating equation (8.3) with respect to 6, we get

%zﬂr[ecosemin@]
T

00
0¢ _qrécoso N grsin@
00 V4 V4

0%¢

02

Similarly =0and opy=0

Similarly

= ﬂ[0(—sin 0) + cosd] +£cos@
T T

2
09 _ A 050+ I coso - I sing

00> & T T

Therefore, equation (8.4) becomes

oy = 1(q93in0j+12(q rc039+g rcos@—g resinej
r\z r-\m T T
= i19sin49+z—qcos@—iﬁsinﬁ
ar nr ar
or o = 2qcosé
ar
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Now, 109 =ﬂ[0 cosf +sind]
T

r oo

i(&%j _0
or\r o6

Hence, 7o =0
The stress function assumed in Equation (8.3) will satisfy the compatibility equation

2 2 2 2
o010 10 V(¢ 10 1099
or: ror r?o60% )l or? ror r? 002

Here oy and oy are the major and minor principal stresses at point P. Now, using the

above expressions for oy, oy and Tty the stresses in rectangular co-ordinate system
(Figure 8.5) can be derived.

Therefore,
0, = oy C0S*0 +5,5iN°0 - 2779 SINO COSO

Here, cy=0and ;=0
Hence, o, = oy C0S°0

2

b eos 0(cos® 0)

ar

o, = 2—qcos3 6

ar
But from the Figure 8.5,

r=+/x%+2z2
z . X
C0S= ——— , sinf= ——
(X2 +122) X +12°
Therefore,
o = 29 z®
) =
(X2 +2°) (x/x2 + 22)3
20z°
0; = 2q 212
T(X°+12%)
Similarly,
oy = o SIiN°0 + o, C0S?0 + 27,,SING
2 )
= 29 ¢0s0sin20+0+0
ar
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2 z x°
- 2 2
adx2 +22 x2+z2 (X2 +17%)
20x2%z
or ze—q -
ﬂ(X2+ZZ)

and 7, = -0pSinO cosO + oy SN0 cosO + 70(cos>0 sin’6)

=0+ 2—qcosesinecose +0

ar
29 .
= “Ysingcos? 0
ar
20 _x 7
ar Jx?+ 27 (X2 +127%)
20xz°
o = —————
T r(x? +22)?

But for the plane strain case,

oy=v(ox+ o)

where, v = Poisson’s ratio

Substituting the values of oy and o3 in oy, we get

20x°z 2qz°
Oy = 2 e T 2 e Y
z(X“+2°)° #(x*+z°)
= 22qv22 [x* +2%]
z(X°+12%)
or oy = 22qu >
(X +z

Therefore according to Flamant’s solution, the following are the stresses due to a vertical
line load on the surface of an half-space.

20x°2
m(x* +12%)?
__ 2qu
(X2 +7%)
3

Ox =

2qz

m(x? +12%)° (8.7)
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20xz°
TXZ = — 5
r(x* +12%)?
and oy = tx = Ty = 1, = 0

8.1.4 ANALYSIS TO FIND THE TRACTIONS THAT ACT ON THE
CYLINDRICAL SURFACE ALIGNED WITH LINE LOAD

Figure 8.6 Cylindrical surface aligned with line load

One can carry out an analysis to find the tractions that act on the cylindrical surface by using
the stress components in Equation (8.7).

20z .
Here, the traction vector is given by T = % n (8.8)

where A is the unit normal to the cylindrical surface. This means to say that the cylindrical
surface itself is a principal surface. The major principal stress acts on it.
2Qz

Hence, o1 = F (8.9)

The intermediate principal surface is defined by n = {0, 1, 0} and the intermediate principal
stress is o, = voy.

The minor principal surface is perpendicular to the cylindrical surface and to the
intermediate principal surface and the minor principal stress is exactly zero.

The other interesting characteristic of Flamant’s problem is the distribution of the principal
stress in space.

Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju



Module 8/Lesson 1

Now, consider the locus of points on which the major principal stress o is a constant. From
Equation (8.9), this will be a surface for which

Z _7mo, _ i
b> 29 2h
where C is a constant.
But b =x*+ 22

Therefore, z  _ 1
(x*+2%) 2h

or b?=(X+z%) = 2hz

which is the equation of a circle with radius C centered on the z-axis at a depth C beneath the
origin, as shown in Figure 8.7.

:

Figure 8.7 Pressure bulb on which the principal stresses are constant

At every point on the circle, the major principal stress is the same. It points directly at the

origin. If a larger circle is considered, the value of o; would be smaller. This result gives us
the idea of a "pressure bulb™ in the soil beneath a foundation.

10
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8.1.5 BOUSSINESQ’S PROBLEM

The problem of a point load acting normal to the surface of an elastic half-space was solved
by the French mathematician Joseph Boussinesq in 1878. The problem geometry is
illustrated in Figure 8.8. The half-space is assumed to be homogeneous, isotropic and elastic.
The point load is applied at the origin of co-ordinates on the half-space surface. Let P be the
magnitude of the point load.

P

v -

Figure 8.8 Boussinesq’s problem

Consider the stress function
1

$=B(r*+22) (8.10)
where B is a constant.

The stress components are given by

or = 3(vvqu —Z%J

oz
Gg=£[VV2 —iﬁj (8.11)
0z ror
0 ,, 0%
Z:_ 2_ V I
” 82[( vIV'e 822}
11
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_ 0l q_ w2y O
Trz = or {(1 vV 622}

Therefore, by substitution, we get
3 5
o, = B{(l—Zv)z (r?+22)2-3r22(r? + zz)_Z}
3
o, =Bl-2v]z(r? +2%) 2 (8.12)

o, - B[(l—Zv)z (r+ 22)7% +32%(r% + zz)z}

T, :—B{(l—Zv)r(r2 + zz)_g +3rz%(r? + 22)_2}

Now, the shearing forces on the boundary plane z = 0 is given by
-B@-2v)

=2 (a)
In polar co-ordinates, the distribution of stress is given by
(o —AS, o, =04 dog R
R drR 2
o ay =LA
2R

where A is a constant and R =+/r® + z°
In cylindrical co-ordinates, we have the following expressions for the stress components:
or=ogrsSiN® y+ o ,C08 ¥

0,=0gCOS* Y+ o,sin? (8.13)
v y

Ty = %(O‘R-G 9) SIN2y

1A

O, =
° 2R®
But from Figure 8.8

1
siny = r(r2 +22) 2

1
cosy = z(r2 + 22) 2

Substituting the above, into oy, o7, 7, and oywe get

12
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5

r? —%zzj r2+72)2
2 _ler
2

5
Ty = %(r2 + 22)7E (Arz) (8.14)

5

Z r2+zz)7

GA( (
o =A (
op= —%A(r2 +22)7g

Suppose now that centres of pressure are uniformly distributed along the z-axis fromz = 0 to
Z = -oo. Then by superposition, the stress components produced are given by

o, = Alf(r2 —%zzj(rz +22)_gdz

1 3
= %[iz—iz(r2+zz) 2 _z7(r*+12%) 2}
r’ r

5

o, :Al]g(zz—%er(errzz)_Zdz (8.15)
= %z(r2 + 22)7%

®© 5 _E
T :%Aljrz(r2+zz)2dz =%r(r2+zz) 2

rz
z

c, = —%Ai]g(r2 + zz)_gdz

1
=_ﬁ{%_%(rz+zz }
r

2\r
On the plane z = 0, we find that the normal stress is zero and the shearing stress is
1A
Trz = Er—z (b)

From (a) and (b), it is seen that the shearing forces on the boundary plane are eliminated if,
- B(1—2v)+% =0
Therefore, A, = 2B(1-2v)

13
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Substituting the value of A; in Equation (8.15) and adding together the stresses (8.12) and
(8.15), we get

T = B{(l—Zv{riz_riz(ﬁ + 22)_;}—3r22(r2 + 22)‘2}
o, = —3823(r2 + zz)_g

1 3
o, = B(1—2v){—i2+i2(r2 + 22)75 + z(r2 + 22)2}
r r
_5
T, = —3Brzz(r2 + 22) 2 (8.16)
The above stress distribution satisfies the boundary conditions, since o; = 7., = 0 forz = 0.

To Determine the Constant B

Consider the hemispherical surface of radius ‘a’ as illustrated in the Figure 8.9. For any

point on this surface let R = a = constant. Also, w be the angle between a radius of the
hemisphere and the z-axis.

Z

Figure 8.9 Vertical tractions acting on the hemispherical surface

The unit normal vector to the surface at any point can be written as
siny

n=| o
cosy

while r and z components of the point are

14
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Z=acos y, r=asiny
The traction vector that acts on the hemispherical surface is,

T, o, 0 7| siny o,siny +17,, CoSy
T=(T,|=|0 o, O 0 |= 0

T T

z

rz

0 o, |lcosy 7., SINy + 0, COSy

rz

Considering the component of stress in the z-direction on the hemispherical surface,
we have

T, = -(@; Siny + o; COSy)

Substituting the values of 7;, o7, Siny and oSy, in the above expression, we get
T, = 3Bz% (r* + %)

Integrating the above, we get the applied load P.

Therefore,

P:j:/ZTZZM(rZJrzZ);dy/
= I:/Z[SBZZ(rZ+ZZ)_2]{27zr(r2+22);}dy/
w2 2 )
= jo (67B)cos” wsinydy
= 678 Lﬂlzcoszn//sim//dz//

7l2 R
Now, solving for j cos? ysinydy , we proceed as below
o]

Putcosy =t
i.e., -siny, dy =dt
IfcosO=1,thent=1

If cos% =0,thent=0

) ] [e] 1
Hence,J' _tzdtz{s} :{3} =§Therefore, P=2B
0
1 0

OrB=i
2
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Substituting the value of B in Equation (8.16), we get

oy =— i—:f(ﬂ + 22)7g

e o2 [ B2 ) et s )

T r r
3

6925(1—2\/){—% rZ (r +z )% z(r2+zz)2}

3P S
T = —Erzz(r2 - 22) 2
Putting R = v/r® + z” and simplifying, we can write

3Pz®
27R°

O__i 1-2v) _3r22
" 27|R(R+z) R°®

__Pe-m[z 1
"2t |R® R(R+2)

2
5= P12 (8.162)

2z R®
Also, Boussinesq found the following displacements for this case of loading.

O; =—

U= P |rz (A-2vr

" 47GR R+

Ug=0 (8.16h)
P 2

u, = 2GR [2(1 V) + —}

8.1.6 COMPARISON BETWEEN KELVIN’S AND BOUSSINESQ’S
SOLUTIONS

On the plane z = 0, all the stresses given by Kelvin vanish except 7. For the special case

where Poisson’s ratio v = 1/2 (an incompressible material), then 7, will also be zero on this
surface, and that part of the body below the z = 0 plane becomes equivalent to the half space

16
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of Boussinesq’s problem. Comparing Kelvin’s solution (with v = 1/2) with Boussinesq’s
solution (with v = 1/2), it is clear that for all z >0, the solutions are identical. For z <0, we
also have Boussinesq’s solution, but with a negative load —P. The two half-spaces,
which together comprise the infinite body of Kelvin’s problem, act as if they are
uncoupled on the plane z = 0, where they meet.

Further, a spherical surface is centered on the origin, we find a principal surface on which
the major principal stress is acting. The magnitude of the principal stress is given by

3Pz
0= o o3 (8.17)

where R is the sphere radius. It can be observed that the value of o; changes for negative

values of z, giving tensile stresses above the median plane z = 0.

8.1.7 CERRUTTI’'S PROBLEM

Figure 8.10 shows a horizontal point load P acting on the surface of a semi-infinite
soil mass.

P - —— X
\ <
-
\R i
y Y \
Z
P(x,y,z)

Figure 8.10 Cerrutti’s Problem

17
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The point load represented by P acts at the origin of co-ordinates, pointing in the x-direction.
This is a more complicated problem than either Boussinesq’s or Kelvin problem due to the
absence of radial symmetry. Due to this a rectangular co-ordinate system is used in
the solution.

According to Cerrutti’s solution, the displacements are given by

2 2
u, = P 1+—+(1 2v) R___X 5 (8.18)
47GR R? R+z (R+2)
TSR R AP . . (8.182)
47GR | R (R+2)
u L{ +(@1-2v) } (8.18b)
* 47GR R+12 '
and the stresses are
Px (1-2v) , 2Ry’
ox= — + R? — 8.19
ZﬂRS{ R* (R+z) [ VTR (619
2 _ 2
oo P M, o 2R 6159
2R°| R (R+2) (R+2)
3Pxz?
o; = P (8.19b)
2
Ty = — Py3 —+ U=2v) | gz 2, 2R (8.19¢)
27R R (R+12)? (R+2)
3Pxyz
= o (8.19d)
3Px*z
Ty = PR (8.19)

Here, R® = x*+y*+7°

It is observed from the above stress components that the stresses approach to zero for large
value of R. Inspecting at the x-component of the displacement field, it is observed that
the particles are displaced in the direction of the point load. The y-component of
displacement moves particles away from the x-axis for positive values of X and towards
the x-axis for negative X. The plot of horizontal displacement vectors at the surface z = 0 is

18
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shown in Figure 8.11 for the special case of an incompressible material. Vertical
displacements take the sign of X and hence particles move downward in front of the load

and upward behind the load.

- — T
e
“‘-\ /;
. =
= s
i —
~— - P — -
- e —— = X
__r ,__L
e -~
o Tl
= i
v T
m

!
y

Figure 8.11 Distribution of horizontal displacements surrounding the point load
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8.1.8 MINDLIN’S PROBLEM

Origin of
co-ordinates

Figure 8.12 Mindlin’s Problem

The two variations of the point-load problem were solved by Mindlin in 1936. These are the
problems of a point load (either vertical or horizontal) acting in the interior of an elastic
half space. Mindlin’s problem is illustrated in Figure 8.12. The load P acts at a point
located a distance z beneath the half-space surface. Such problems are more complex than
Boussinesq’s or Kelvin or Cerrutti’s. They have found applications in the computations of
the stress and displacement fields surrounding an axially loaded pile and also in the study of
interaction between foundations and ground anchors.

It is appropriate to write Mindlin’s solution by placing the origin of co-ordinates a distance
C above the free surface as shown in the Figure 8.12. Then the applied load acts at the
point z = 2h.

From Figure 8.12,

RP=r"+7°

RI=r"+7;

where z;, =z -2h

Here z; and R; are the vertical distance and the radial distance from the point load.

20
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For the vertical point load, Mindlin’s solution is most conveniently stated in terms of
Boussinesq’s solution.  For example, consider the displacement and stress fields in
Boussinesq’s problem in the region of the half-space below the surface z = C. These
displacements and stresses are also found in Mindlin’s solution, but with additional terms.
The following equations will give these additional terms.

To obtain the complete solution, add them to Equations (8.7a) and (8.7b)

Therefore,
N 3r’z, (1-2v)y, . (1-2v)z-12(-v)c 3r’z-6(7-2v)cz’ +24c*z
" 8r(l-v)| R R? R® R®
30cz?(z-c
sz lz—¢) R(f )} (8.20)
_ _ _ 2 2
om Pl (1 23v)z1 s (@ 2v)(32 +6c) 6(1 2v)cz5 6c’z (8.209)
8z(l-v) R; R R
oo P 32 @-2v)z, (1-2v)fz-2c) 3z°+12(2-v)ez’ -18¢*z
© 8rz(l-v)| R RS R® R®
2
, 30cz R(7z - c)} (8.20b)
_Pr [322 (1-2v) (1-2v) 3z*+6(3-2v)cz—6c? 30cz?(z-c)
Tr— + - — +
8z(1-v)|R®  R? R® R® R’
(8.20c)
and o = Tor = Toz = Typ = 0 (8.20d)

Mindlin’s solution for a horizontal point load also employs the definitions for z; and
R;. Now introduce rectangular coordinate system because of the absence of
cylindrical symmetry.

Replace r* by x*+y?, and assume (without any loss of generality) that the load acts in the
x-direction at the point z = c. Here the solution is conveniently stated in terms of Cerrutti’s
solution, just as the vertical point load was given in terms of Boussinesq’s solution.
Therefore, the displacements and stresses to be superposed on Cerrutti’s solution are

o P {x_2+(3—4v)_(3—4v)+(—x2+20(z—c))_(6cx2(z—c))} (6.21)
167(1-v)G |R? R, R R? R®
___ P Xy _xy _6Boxy(z—c)
uy_167r(1—v)G{Rf R® R } (8212
21
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L= 16%(1P_ = { % xz+ 2(23—4v)cz ~ 6cxzézs —c)} (8.21b)
1
oo PX 3 (1-2v) (1-2v) 3x*-6(3-2v)cz+18c*> 30cx*(z-c)
* 8z(l-v)|R® R} R® R® R’
(8.21¢)
_ Px  |3y" (1-2v) (1-2v) 3y*-6(1-2v)cz+6c® 30cy?(z-c)
Oy = _ 5 5 T 3 5 - 7
8z(1-v)| R} R: R R R
(8.21d)
Px |3z (1-2v) (@-2v) 3z® +6(-2v)z+6c*> 30cz’(z-c)
7 = - + - -
8z(1l-v)| R’ R? R® R® R’
(8.21e)
Py 3x? +1—2v_1—2v_3x2—6c(z—c)_30cx2(z—c) (621
Y 8r@l-v)| R R? R® R® R’ '
Pxy |3z, 3z+6(-2v)c 30cz(z-c)

- _1%h - 8.21
2 87:(1—v){ RS RS R (8:219)
R 3z, @-2v)z, (1-2v)z-2c) 3x°z+6(1-2v)ex’ —6cz(z—c)
7 8r(l-v)| R® R} R R®

30cx?z(z —c)
3 = (8.21h)

8.1.9 APPLICATIONS

The mechanical response of naturally occurring soils are influenced by a variety of factors.
These include (i) the shape, size and mechanical properties of the individual soil particles,
(ii) the configuration of the soil structure, (iii) the intergranular stresses and stress history,
and (iv) the presence of soil moisture, the degree of saturation and the soil permeability.
These factors generally contribute to stress-strain phenomena, which display markedly
non-linear, irreversible and time dependent characteristics, and to soil masses, which exhibit
anisotropic and non-homogeneous material properties. Thus, any attempt to solve a
soil-foundation interaction problem, taking into account all such material characteristics,
is clearly a difficult task. In order to obtain meaningful and reliable information for practical
problems of soil-foundation interaction, it becomes necessary to idealise the behaviour of
soil by taking into account specific aspects of its behavior. The simplest type of idealised soil
response assumes linear elastic behaviour of the supporting soil medium.
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In general, one can divide the foundation problems into two classes, (1) interactive problems
and (2) noninteractive problems. In the case of interactive problems, the elasticity of the
foundation plays an important role. For example, a flexible raft foundation supporting a
multistorey structure, like that illustrated in Figure 8.13 interacts with the soil. In terms of
elasticity and structural mechanics, the deformation of the raft and the deformation of the
soil must both obey requirements of equilibrium and must also be geometrically compatible.
If a point on the raft is displaced relative to another point, then it can be realised that the
bending stresses will develop within the raft and there will be different reactive pressures in
the soil beneath those points. The response of the raft and the response of the soil are
coupled and must be considered together.

Figure 8.13 Flexible raft foundation supporting a multistorey structure

But non-interactive problems are those where one can reasonably assume the elasticity of the
foundation itself is unimportant to the overall response of the soil. Examples of non-
interactive problems are illustrated in Figure 8.14.

The non-interactive problems are the situations where the structural foundation is either very
flexible or very rigid when compared with the soil elasticity. In non-interactive problems, it
iS not necessary to consider the stress-strain response of the foundation. The soil
deformations are controlled by the contact exerted by the foundation, but the response of the
soil and the structure are effectively uncoupled.
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Figure 8.14 Examples of non-interactive problems

Therefore it is clear that non-interactive problems will be much simpler than interactive
problems. Because of their convenience and simplicity, non-interactive problems such as a
uniform vertical stress applied at the surface of a homogeneous, isotropic, elastic half-space
are considered here. Generally, one can determine some of the stresses and displacements
just by integrating Boussinesq’s fundamental equations over the region covered by the load.
There are other methods for finding appropriate solutions to these types of foundation
problems, in which specialized mathematical models have been developed for soils that
mimic some of the response characteristics of linear elasticity. One of the simplest model is
the "Winkler model".
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