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Module 8: Elastic Solutions and Applications  
in Geomechanics                                          
 

 

8.1.1    INTRODUCTION 

ost of the elasticity problems in geomechanics were solved in the later part of 
nineteenth century and they were usually solved not for application to geotechnical 

pursuits, but simply to answer basic questions about elasticity and behavior of elastic bodies.  
With one exception, they all involve a point load.  This is a finite force applied at a point: a 
surface of zero area.  Because of stress singularities, understanding point-load problems will 
involve limiting procedures, which are a bit dubious in regard to soils. Of all the point-load 
problems, the most useful in geomechanics is the problem of a point load acting normal to 
the surface of an elastic half-space.  

The classical problem of Boussinesq dealing with a normal force applied at the  
plane boundary of a semi-infinite solid has found practical application in the study of  
the distribution of foundation pressures, contact stresses, and in other problems  
of soil mechanics. Solutions of the problems of Kelvin, Flamant, Boussinesq, Cerrutti and 
Mindlin related to point load are discussed in the following sections.  
 

8.1.2    KELVIN’S PROBLEM  

It is the problem of a point load acting in the interior of an infinite elastic body as shown in 
the Figure 8.1.                                                                                          

 

Figure 8.1 Kelvin’s Problem 

M 
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Consider a point load of magnitude 2P acting at a point in the interior of an infinite  
elastic body. 

In the cylindrical coordinate system, the following displacements can be obtained by 
Kelvin’s solution.  

Displacement in radial direction = ur = 
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 trq = tqr = tqz = tzq = 0 

Here R = 22 rz +  

It is clear from the above expressions that both displacements and stresses die out for larger 

values of R.  But on the plane z = 0, all the stress components except for trz vanish, at all 
points except the origin.  

Vertical Tractions Equilibrating the applied Point Load 

Consider the planar surface defined by z = h± , as shown in the Figure 8.2.  
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Figure 8.2 Vertical stress distributions on horizontal planes above and below point load 

The vertical component of traction on this surface is sz.  If we integrate sz, over this entire 
surface, we will get the resultant force. To find this resultant force, consider a horizontal 

circle centered on the z-axis over which sz is constant (Figure 8.3). 

Therefore, the force acting on the annulus shown in Figure 8.3 will be sz ´  2prdr. 

Now, the total resultant force on the surface z = h is given by, 
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To simplify the integration, introduce the angle y as shown in the Figure 8.2.  
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Here 

r = h tany      and       dr = h sec2y dy 

Therefore, Resultant upward force = ò +-
-

2/ 2 ]sincos3sin)21[(
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Solving, we get resultant upward force on the lower plane = P which is exactly one-half the 
applied load. Further, if we consider a similar surface z = - h, shown in Figure 8.2, we will 
find tensile stresses of the same magnitude as the compressive stresses on the lower plane.  

Hence, Resultant force on the upper plane = -P   (tensile force). Combining the two resultant 

forces, we get 2P which exactly equilibrate the applied load.  
 

 
 

Figure 8.3 Geometry for integrating vertical stress 
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8.1.3    FLAMANT’S PROBLEM 

Figure 8.4 shows the case of a line load of intensity ‘q’ per unit length acting on the surface 
of a homogeneous, elastic and isotropic half-space.    

 

Figure 8.4 Vertical line load on Surface of an half-space                                                                   

 

Figure 8.5 Stresses due to a vertical line load in rectangular coordinates 
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The stresses at a point P (r, q) can be determined by using the stress function 

f = qq
p

sinr
q

                                           (8.3) 

In the polar co-ordinate system, the expressions for the stresses are as follows: 
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Now, differentiating Equation (8.3) with respect to r, we get 
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Hence, trq = 0 

The stress function assumed in Equation (8.3) will satisfy the compatibility equation 
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Here sr and sq are the major and minor principal stresses at point P. Now, using the  
above expressions for sr, sq and trq, the stresses in rectangular co-ordinate system  
(Figure 8.5) can be derived.   

Therefore,  

sz = sr cos2q +sqsin2q  - 2trq sinq cosq  

Here, sq = 0 and trq = 0 

Hence, sz = sr cos2q  
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But for the plane strain case,  

sy = n (sx + sz) 
where, n = Poisson’s ratio 

Substituting the values of sx and sz in sy, we get 
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Therefore according to Flamant’s solution, the following are the stresses due to a vertical 
line load on the surface of an half-space.  
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and txy = tyx = tzy = tyz = 0  

8.1.4 ANALYSIS TO FIND THE TRACTIONS THAT ACT ON THE  
             CYLINDRICAL SURFACE ALIGNED WITH LINE LOAD 

 

Figure 8.6 Cylindrical surface aligned with line load 
 
One can carry out an analysis to find the tractions that act on the cylindrical surface by using 
the stress components in Equation (8.7). 

Here, the traction vector is given by T = n
b
qz

ˆ
2

2p
                         (8.8) 

where n̂  is the unit normal to the cylindrical surface.  This means to say that the cylindrical 
surface itself is a principal surface.  The major principal stress acts on it.  

Hence, s1 = 
2

2
b
qz

p
                            (8.9) 

The intermediate principal surface is defined by n̂ = {0, 1, 0} and the intermediate principal 
stress is s2 = ns1. 
The minor principal surface is perpendicular to the cylindrical surface and to the 
intermediate principal surface and the minor principal stress is exactly zero.  
The other interesting characteristic of Flamant’s problem is the distribution of the principal 
stress in space.  
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Now, consider the locus of points on which the major principal stress s1 is a constant. From 
Equation  (8.9), this will be a surface for which  
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or   b2 = (x2+z2) = 2hz 

which is the equation of a circle with radius C centered on the z-axis at a depth C beneath the 
origin, as shown in Figure 8.7.  

 

 
 

Figure 8.7  Pressure bulb on which the principal stresses are constant 

At every point on the circle, the major principal stress is the same.  It points directly at the 
origin.  If a larger circle is considered, the value of s1 would be smaller.  This result gives us 
the idea of a "pressure bulb" in the soil beneath a foundation.  
 



Module 8/Lesson 1 

11 
Applied Elasticity for Engineers  T.G.Sitharam & L.GovindaRaju 
 

8.1.5    BOUSSINESQ’S PROBLEM 

The problem of a point load acting normal to the surface of an elastic half-space was solved 
by the French mathematician Joseph Boussinesq in 1878. The problem geometry is 
illustrated in Figure 8.8. The half-space is assumed to be homogeneous, isotropic and elastic.  
The point load is applied at the origin of co-ordinates on the half-space surface.  Let P be the 
magnitude of the point load.  
 

 

Figure 8.8 Boussinesq’s problem 

Consider the stress function 
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The stress components are given by  
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Now, the shearing forces on the boundary plane z = 0 is given by  
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In cylindrical co-ordinates, we have the following expressions for the stress components: 

s r = s R sin2 y + s q cos2 y 

s z = s R cos2 y + s q sin2 y                           (8.13) 
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Substituting the above, into sr, sz, trz and sq we get 
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Suppose now that centres of pressure are uniformly distributed along the z-axis from z = 0 to  
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On the plane z = 0, we find that the normal stress is zero and the shearing stress is 
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From (a) and (b), it is seen that the shearing forces on the boundary plane are eliminated if, 
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Substituting the value of A1 in Equation (8.15) and adding together the stresses (8.12) and 
(8.15), we get 
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The above stress distribution satisfies the boundary conditions, since sz = trz = 0 for z = 0. 

To Determine the Constant B 

Consider the hemispherical surface of radius ‘a’ as illustrated in the Figure 8.9. For any 
point on this surface let R = a = constant.  Also, y be the angle between a radius of the 
hemisphere and the z-axis.  

 

Figure 8.9 Vertical tractions acting on the hemispherical surface 

The unit normal vector to the surface at any point can be written as 
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while r and z components of the point are 
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z = a cos y,  r = a sin y  

The traction vector that acts on the hemispherical surface is, 
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Considering the component of stress in the z-direction on the hemispherical surface, 
we have  

Tz = -(trz siny + sz cosy) 

Substituting the values of trz, sz, siny and cosy, in the above expression, we get 
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Integrating the above, we get the applied load P.  
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Substituting the value of B in Equation (8.16), we get 

sz = - ( ) 2

5
223

2
3 -

+ zrz
π
P

 

sr = ( ) ( ) ( )
þ
ý
ü

î
í
ì

+-ú
û

ù
ê
ë

é
+--

--
2
5

2222
1

22
22 3

1
21

2
zrzrzr

r
z

r
P n
p

 

sq = ( ) ( )
þ
ý
ü

î
í
ì

++++--
--

2

3
222

1
22

22

1
)21(

2
zrzzr

r
z

r
P n
p

 

trz = ( ) 2

5
222

2
3 -

+- zrrz
P
p

  

Putting R = 22 zr + and simplifying, we can write 
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Also, Boussinesq found the following displacements for this case of loading.  
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8.1.6  COMPARISON BETWEEN KELVIN’S AND BOUSSINESQ’S  
           SOLUTIONS 

On the plane z = 0, all the stresses given by Kelvin vanish except trz. For the special case 

where Poisson’s ratio n  = 1/2 (an incompressible material), then trz will also be zero on this 

surface, and that part of the body below the z = 0 plane becomes equivalent to the half space 
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of Boussinesq’s problem.  Comparing Kelvin’s solution (with n = 1/2) with Boussinesq’s 

solution (with n  = 1/2), it is clear that for all z ³ 0, the solutions are identical.  For z £ 0, we 

also have Boussinesq’s solution, but with a negative load –P.  The two half-spaces,  

which together comprise the infinite body of Kelvin’s problem, act as if they are  

uncoupled on the plane z = 0, where they meet.  

Further, a spherical surface is centered on the origin, we find a principal surface on which 

the major principal stress is acting. The magnitude of the principal stress is given by  

s1 = 32
3

R
Pz
p

                 (8.17) 

where R is the sphere radius.  It can be observed that the value of s1 changes for negative 

values of z, giving tensile stresses above the median plane z = 0.  
 
8.1.7   CERRUTTI’S PROBLEM 

Figure 8.10 shows a horizontal point load P acting on the surface of a semi-infinite  
soil mass.  

 

 

 

Figure 8.10 Cerrutti’s Problem 
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The point load represented by P acts at the origin of co-ordinates, pointing in the x-direction. 
This is a more complicated problem than either Boussinesq’s or Kelvin problem due to the 
absence of radial symmetry.  Due to this a rectangular co-ordinate system is used in  
the solution.  

According to Cerrutti’s solution, the displacements are given by 
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and the stresses are 
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Here, R2 = x2+y2+z2 

It is observed from the above stress components that the stresses approach to zero for large 

value of R. Inspecting at the x-component of the displacement field, it is observed that  
the particles are displaced in the direction of the point load. The y-component of 

displacement moves particles away from the x-axis for positive values of x and towards  

the x-axis for negative x.  The plot of horizontal displacement vectors at the surface z = 0 is 
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shown in Figure 8.11 for the special case of an incompressible material. Vertical 

displacements take the sign of x and hence particles move downward in front of the load  
and upward behind the load.  

 

Figure 8.11    Distribution of horizontal displacements  surrounding the point load 
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8.1.8    MINDLIN’S PROBLEM 

 

Figure 8.12 Mindlin’s Problem 

The two variations of the point-load problem were solved by Mindlin in 1936.  These are the 
problems of a point load (either vertical or horizontal) acting in the interior of an elastic  

half space.  Mindlin’s problem is illustrated in Figure 8.12.  The load P acts at a point 
located a distance z beneath the half-space surface.  Such problems are more complex than 
Boussinesq’s or Kelvin or Cerrutti’s.  They have found applications in the computations of 
the stress and displacement fields surrounding an axially loaded pile and also in the study of 
interaction between foundations and ground anchors.  

It is appropriate to write Mindlin’s solution by placing the origin of co-ordinates a distance  
C above the free surface as shown in the Figure 8.12. Then the applied load acts at the  
point  z = 2h.  

From Figure 8.12, 

R2 = r2 + z2 
R 2

1 = r2 + z 2
1  

where  z1 = z – 2h 

Here z1 and R1 are the vertical distance and the radial distance from the point load.  
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For the vertical point load, Mindlin’s solution is most conveniently stated in terms of 
Boussinesq’s solution.  For example, consider the displacement and stress fields in 
Boussinesq’s problem in the region of the half-space below the surface z = C.  These 
displacements and stresses are also found in Mindlin’s solution, but with additional terms.  
The following equations will give these additional terms.  

To obtain the complete solution, add them to Equations (8.7a) and (8.7b)  

Therefore,  
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and trq = tqr = tqz = tzq = 0             (8.20d) 

Mindlin’s solution for a horizontal point load also employs the definitions for z1 and  
R1. Now introduce rectangular coordinate system because of the absence of  
cylindrical symmetry.  

Replace r2 by x2+y2, and assume (without any loss of generality) that the load acts in the  
x-direction at the point z = c. Here the solution is conveniently stated in terms of Cerrutti’s 
solution, just as the vertical point load was given in terms of Boussinesq’s solution.  
Therefore, the displacements and stresses to be superposed on Cerrutti’s solution are 

ux = 
( )

( ) ( ) ( )( ) ( )( )
þ
ý
ü

î
í
ì -

-
-+-

+
-

-
-

+
- 5

2

3

2

1
3
1

2 624343
116 R

czcx

R

czcx
RRR

x
G

P nn
np

       (8.21) 

uy = ( )
( )

þ
ý
ü

î
í
ì -

--
- 533

1

6
116 R

czcxy

R

xy

R

xy
G

P
np

            (8.21a) 



Module 8/Lesson 1 

22 
Applied Elasticity for Engineers  T.G.Sitharam & L.GovindaRaju 
 

uz = 
( )

( ) ( )
þ
ý
ü

î
í
ì -

-
-+

-
- 533

1

1 6432
116 R

czcxz

R

czxz

R

xz

G
P n
np

         (8.21b) 

sx  = ( )
( ) ( ) ( ) ( )

þ
ý
ü

î
í
ì -

-
+--

-
-

-
-

+
- 7

2

5

22

33
1

5
1

2 3018236321213
18 R

czcx

R

cczx

RRR

xPx nnn
np

 

                                  (8.21c) 

sy = ( ) þ
ý
ü

î
í
ì -

-
+--

-
-

+
-

-
- 7

2

5

22

33
1

5
1

2 )(306)21(63)21()21(3
18 R

czcy

R

cczy

RRR

yPx nnn
np

 

                (8.21d) 

sz  = ( )
( ) ( ) ( ) ( )

þ
ý
ü

î
í
ì -

-
+-+

-
-

+
-

-
- 7

2

5

22

33
1

5
1

2
1 306216321213

18 R
czcz

R
cczz

RRR

zPx nnn
np

 

                             (8.21e) 

txy = ( )
( ) ( )

þ
ý
ü

î
í
ì -

-
--

-
-

-
-

+
- 7

2

5

2

33
1

5
1

2 306321213
18 R

czcx
R

czcx
RRR

xPy nn
np

        (8.21f) 

tyz = ( )
( ) ( )

þ
ý
ü

î
í
ì -

-
-+

-
- 755

1

1 3021633

18 R

czcz

R

cz

R

zPxy n
np

          (8.21g) 

tzx = ( )
( ) ( )( ) ( ) ( )

î
í
ì ---+

-
--

-
-

+
- 5

22

33
1

1
5
1

1
2 62163221213

18 R
czczcxzx

R
cz

R

z

R

zxP nnn
np

 

                    
( )

þ
ý
ü-

-
7

230

R

czzcx
               (8.21h) 

8.1.9     APPLICATIONS 

The mechanical response of naturally occurring soils are influenced by a variety of factors.  
These include (i) the shape, size and mechanical properties of the individual soil particles, 
(ii) the configuration of the soil structure, (iii) the intergranular stresses and stress history, 
and (iv) the presence of soil moisture, the degree of saturation and the soil permeability.  
These factors generally contribute to stress-strain phenomena, which display markedly  
non-linear, irreversible and time dependent characteristics, and to soil masses, which exhibit 
anisotropic and non-homogeneous material properties. Thus, any attempt to solve a  
soil-foundation interaction problem, taking into account all such material characteristics,  
is clearly a difficult task.  In order to obtain meaningful and reliable information for practical 
problems of soil-foundation interaction, it becomes necessary to idealise the behaviour of 
soil by taking into account specific aspects of its behavior. The simplest type of idealised soil 
response assumes linear elastic behaviour of the supporting soil medium.  
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In general, one can divide the foundation problems into two classes, (1) interactive problems 
and (2) noninteractive problems. In the case of interactive problems, the elasticity of the 
foundation plays an important role. For example, a flexible raft foundation supporting a 
multistorey structure, like that illustrated in Figure 8.13 interacts with the soil. In terms of 
elasticity and structural mechanics, the deformation of the raft and the deformation of the 
soil must both obey requirements of equilibrium and must also be geometrically compatible.  
If a point on the raft is displaced relative to another point, then it can be realised that the 
bending stresses will develop within the raft and there will be different reactive pressures in 
the soil beneath those points. The response of the raft and the response of the soil are 
coupled and must be considered together.  

 

Figure 8.13 Flexible raft foundation supporting a multistorey structure 

But non-interactive problems are those where one can reasonably assume the elasticity of the 
foundation itself is unimportant to the overall response of the soil. Examples of non-
interactive problems are illustrated in Figure 8.14.  

The non-interactive problems are the situations where the structural foundation is either very 
flexible or very rigid when compared with the soil elasticity.  In non-interactive problems, it 
is not necessary to consider the stress-strain response of the foundation. The soil 
deformations are controlled by the contact exerted by the foundation, but the response of the 
soil and the structure are effectively uncoupled.  
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Figure 8.14 Examples of non-interactive problems 

Therefore it is clear that non-interactive problems will be much simpler than interactive 
problems. Because of their convenience and simplicity, non-interactive problems such as a 
uniform vertical stress applied at the surface of a homogeneous, isotropic, elastic half-space 
are considered here.  Generally, one can determine some of the stresses and displacements 
just by integrating Boussinesq’s fundamental equations over the region covered by the load.  
There are other methods for finding appropriate solutions to these types of foundation 
problems, in which specialized mathematical models have been developed for soils that 
mimic some of the response characteristics of linear elasticity. One of the simplest model is 
the "Winkler model". 
 


