THÉORIE DE L'INFORMATION

Canaux avec bruit

Antoine Chambert-Loir / Guillaume Garrigos

EXERCICE 1

Soit d un entier $\geqslant 3$; on considère un canal avec bruit sans mémoire C dont les alphabets sont tous deux égaux au groupe fini $A = \mathbb{Z}/d\mathbb{Z}$, avec probabilités de transmission $p(a+1 \mid a) = p(a-1 \mid a) = p$ et $p(a \mid a) = 1-2p$, où p est un nombre réel tel que $0 \leqslant p \leqslant 1/2$.

Quelle est la capacité de ce canal? Déterminer une loi d'une variable aléatoire X sur A telle que I(C) = I(X,Y), où $P(Y = b \mid X = a) = p(b \mid a)$.

EXERCICE 2

Soit p un nombre réel tel que $0 \le p \le 1$. Calculer la capacité du canal avec bruit sans mémoire de matrice de probabilités de transmission

$$\begin{pmatrix} 1 & 0 \\ p & 1-p \end{pmatrix}$$
,

ainsi que les lois sur la source qui permettent d'atteindre cette capacité. Étudier la variation de cette capacité avec p; interpréter en particulier les cas p = 1/2, p = 1, p = 0.

EXERCICE 3

Soit C' et C'' des canaux. On suppose que l'alphabet d'entrée de C'' est égal à l'alphabet de sortie de C' et on considère le canal C obtenu en concaténant les deux canaux C' puis C''.

- 1 Calculer la matrice de probabilités de transmissions de C en fonction de celles de C' et C''.
- 2 Majorer la capacité de transmission du canal C.
- On « empile » ainsi une suite de n canaux symétriques binaires de paramètre p (c'est-à-dire que $p(1 \mid 0) = p(0 \mid 1) = p$). Démontrer que le canal C obtenu se comporte comme un canal symétrique binaire de paramètre $(1-(1-2p)^n)/2$. Que se passe-t-il quand $n \to +\infty$. Comparer avec le théorème de Shannon.

EXERCICE 4

Soit C' et C'' des canaux, d'alphabets d'entrée A' et A'', et d'alphabets de sortie B' et B''. On considère le canal $C = C' \times C''$ sur l'alphabet d'entrée $A = A' \times A''$ et l'alphabet de sortie $B = B' \times B''$, avec probabilités de transmission

$$p((b',b'') | (a',a'')) = p(b' | a')p(b'' | a'').$$

Calculer la capacité de ce canal, ainsi qu'une loi sur A qui la réalise.

EXERCICE 5

Soit C' et C'' des canaux, d'alphabets d'entrée A' et A'', et d'alphabets de sortie B' et B''. On considère le canal $C = C' \coprod C''$ sur l'alphabet d'entrée $A = A' \coprod A''$ et l'alphabet de sortie $B = B' \coprod B''$, avec mêmes probabilités de transmission : $p_C(b \mid a) = p_{C'}(b \mid a)$ si $a \in A'$ et $b \in B'$, et $p_C(b \mid a) = p_{C''}(b \mid a)$ si $a \in A''$ et $b \in B''$.

- 1 Expliquer que $p(b \mid a) = 0$ si $b \in B'$ et $a \in B''$, ou si $b \in B''$ et $a \in A'$.
- 2 Démontrer que la capacité de C vérifie

$$e^{I(C)} = e^{I(C')} + e^{I(C'')}$$
.

EXERCICE 6

On considère un canal C sur des alphabets A et B, mais tels que l'utilisation d'un symbole $a \in$ A ait un « coût » $c(a) \ge 0$. La fonction capacité—coût de ce canal est définie par

$$I(C, \gamma) = \sup\{I(X, Y); X \sim_C Y \text{ et } \mathbf{E}(c(X)) \leq \gamma\}.$$

- 1 Calculer cette fonction lorsque C est un canal symétrique binaire de paramètre p.
- **2** Plus généralement, la calculer lorsque C est un canal sur l'alphabet $\{0, ..., d-1\}$ (de cardinal d) de matrice de probabilités de transmission

$$\begin{pmatrix} q & p & \dots & p \\ p & q & \dots & p \\ \vdots & \vdots & \ddots & \vdots \\ p & p & \dots & q \end{pmatrix}$$

où p est un nombre réel tel que $0 \le p \le 1/d$ et q = 1 - dp.