الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية عشعاشة (حمدي شريف عبد القادر)

السنة الدراسية: 2016 /2017

المستوى: السنة الثالثة

المدة: 03 ساعات

مديرية التربية لولاية مستغانم

امتحان الفصل الأول

الشعبة: رياضيات

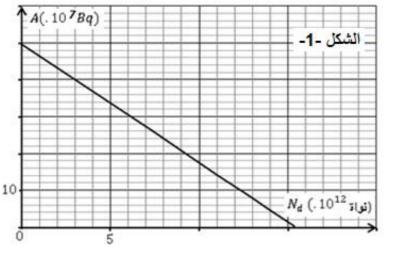
اختبار في مادة: العلوم الفيزيائية

ملاحظة : على التلميذ ، تحرير إجابته بقلم أزرق أو أسود

التمرين الأول: (05,0 نقطة)

يعتبر النظير $^{99}_{43}Tc$ للتكنسيوم من بين الأنوية المشعة المستعملة في المجال الطبّي اعتبارا لمدة حياته القصيرة ، وقلة خطورته الإشعاعية وتكلفته المنخفضة وسهولة وضعه رهن إشارة الأطباء .

- . يعتبر $^{99}_{43}Tc$ و $^{97}_{43}Tc$ نظيران للتكنيسيوم (1
- $^{99}_{43}Tc$ عرّف النواة المشعة و اعط تركيب نواة النظير 1-1
 - 2-1)حدد مع التعليل النواة الأكثر استقرارا.
- . $^{99}_{42}Mo~(molybdene)$ ينتج التكنسيوم عن تفكك نواة الموليبدان و $^{99}_{43}Tc$ عن تفكك نواة الموليبدان
- أ- أكتب معادلة التفاعل النووي لإنتاج التكنتيوم $^{99}_{43}Tc$ انطلاقا من الموليبدان $^{99}_{42}Mo$. ماهو نمط التفكك الحاصل ؟
 - ب- أنجز مخططا للطاقة يوافق التحول النووي الحادث أحسب الطاقة المتحررة $E_{\ell ih}$ خلال ذلك .
- 2) يستعمل التكنسيوم $^{99}_{43}Tc$ في التصوير بالنشاط الإشعاعي لعظام الإنسان قصد تشخيصها ، حيث يتم حقن جسم الإنسان بجرعة تحتوي على التكنيتيوم المشع $^{99}_{43}Tc$ والذي يُستكشف بعد مدة زمنية للحصول على صورة للعظام المفحوصة .
 - . $A = f(N_d)$ المنحنى البياني لتغيرات النشاط الإشعاعي بدلالة عدد الأنوية المتفككة
 - $^{99}_{43}Tc$ أ- بالاعتماد على المنحنى البياني المبين أوجد قيمة ثابت النشاط الإشعاعي λ للتكنيسيوم
 - . $t_{1/2}=6h$: حقق من أنّ قيمة زمن نصف العمر له هي


تم حقن جسم إنسان بحقنة نشاطها الإشعاعي عند $t_0=0$ هو A_0 ليتم أخذ صورة للعظام المفحوصة عند لحظة t_1 حيث تصبح قيمة النشاط الإشعاعي عندها t_1 هو $t_0=0$ من قيمة $t_0=0$.

- . $t_0 = 0$ عدد الأنوية المشعة التي تم حقن الجسم بها عند اللحظة N_0 عدد (2-2
 - . t_1 قيمة (h) قيمة عدد بالساعة

- - 1 - 1

$$m_p = 1,0073 \, u \cdot 1 \, u = 931,5 \, MeV. \, C^{-2}$$

 $m_n = 1,0087 \, u \cdot m_e = 0,00055 \, u$

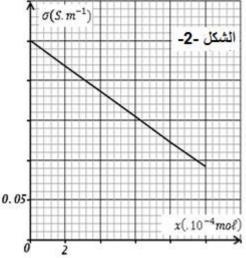
$\binom{97}{43}Tc$)	$\binom{99}{43}Tc$	$\binom{99}{42}Mo$	الثواة
$E_{\ell_3} =$	$E_{\ell_2} =$	$E_{\ell_1} =$	$E_{\ell}(MeV)$
836,28	852,53	852,10	

التمرين الثاني: (06,0 نقطة)

نضع في كأس حجما V_0 من محلول مائي لهيدروكسيد الصوديوم ($Na_{(aq)}^+$, $HO_{(aq)}^-$) كمية مادته N_0 وتركيزه المولي

نفس كمية المادة n_0 من إيتانوات الإيثيل لنحصل على خليط تفاعلي ، t=0 غلى عند لحظة $C_0=10~mo\ell.\,m^{-3}$

. $V pprox V_0 = 10^{-4} m^3$ متساوي المولات حجمه


ننمذج التحول الكيميائي الذي يحدث بين إيتانوات الإيثيل و لهيدروكسيد الصوديوم

 $C_4H_8O_{2(\ell)} + HO_{(aq)}^- \longrightarrow C_2H_3O_{2(aq)}^- + R - OH_{(aq)}$: بالمعادلة التالية

1-أ - أنجز جدو لا لتقدم التفاعل واستنتج التقدم الأعظمي للتفاعل .

ب- أكتب عبارة الناقلية النوعية للوسط التفاعلي:

- . (t=0 \simeq) σ_0 •
- λ_3 و λ_2 ، x ، V_0 ، σ_0 بدلالة (t>0 لما) $\sigma(t)$ •

. x الشكل (2) الشكل $\sigma(t)$ بدلالة $\sigma(t)$ الشكل المنحنى البيانى البيانى $\sigma(t)$ الشكل المنحنى البيانى البيان

د- بالاستعانة بإجابة السؤالين (ب - ج) بيّن سبب تناقص الناقلية النوعية في الوسط التفاعلي .

2- المتابعة الزمنية لتطور التحول الكيمائي:

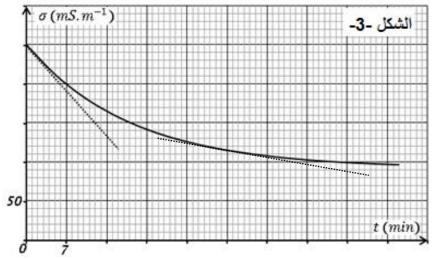
نتتبع تطور التحول الكيمائي عن طريق قياس الناقلية

النوعية للمزيج التفاعلي خلال الزمن لنحصل بواسطة

 $\sigma=f(t)$ برمجية معلوماتية على المنحنى البياني

في الشكل (3) <u>.</u>

الناقلية النوعية للخليط التفاعلي ثم σ_{ν_2} أحسب أ


. $t_{1/2}$ استنتج زمن نصف التفاعل

2-2) حركية التفاعل:

. $\sigma(t)$ أ) عرف السرعة الحجمية للتفاعل v_V ثم أوجد عبارتها بدلالة

. (t=35min) و (t=0) عند اللحظتين $(mo\ell.m^3.min^{-1})$ و المراجة التفاعل بالوحدة و المراجة المراج

اشرح تطور السرعة الحجمية للتفاعل.

معطبات:

$C_2H_3O_{2(aq)}^-$	$HO_{(aq)}^-$	$Na_{(aq)}^+$	الشاردة
λ_3	λ_2	λ_1	$(mS. m^2. mo\ell^{-1})$ الناقلية النوعية المولية الشاردية ب ℓ

التمرين الثالث: (04,5 نقطة)

. تعتبر الدارة الكهربائية RC من بين الدارات الكهربائية المستعملة في التراكيب الإلكترونية لمجموعة من الأجهزة الكهربائية

يتكون التركيب المبين في الشكل -4- من:

.
$$C_2=2\mu F$$
 و مكثفتين سعتاهما -

$$R = 3K\Omega$$
 ناقل اومی مقاومته -

عند لحظة نختار ها مبدءا للأزمنة (t=0) ، نغلق القاطعة .

.
$$C_{eq}=\frac{c_1.c_2}{c_1+c_2}$$
 : ييّن أن السعة C_{eq} المكثفة المكافئة في الدارة هي -1

 $E = \begin{bmatrix} U_2(t) & U_2(t) \\ U_1(t) & U_R(t) \\ \vdots & \vdots \\ C_1 & R \end{bmatrix}$

الشكل -4-

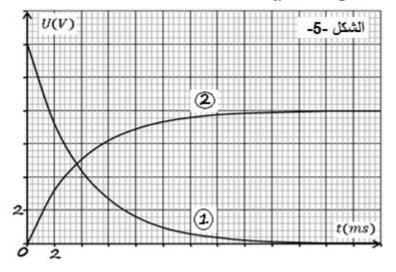
: كتب بالشكل والمعادلة التفاضلية التي يحققها التوتر $U_2(t)$ بين طرفي المكثفة ذات السعة التوتب بالشكل -2

$$\frac{dU_2(t)}{dt} + \frac{1}{R C_{eq}} U_2(t) = \frac{E}{R C_2}$$

. $U_2(t)=A(1-e^{-lpha\,t})$: ب- يكتب حل هذه المعادلة على الشكل

. RC عبارة كل من الثابتين A و \propto بدلالة المقادير المميزة للدارة

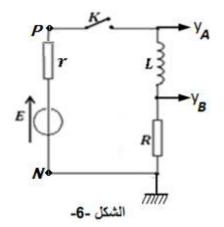
. q(t) عبارة شدة التيار الكهربائي i(t) وكذا شحنة المكثفة


. $U_{R}(t)$ و $U_{2}(t)$ منحنیا الشكل – 5- تطور التوترین الكهربائیین (1) و (2) منحنیا الشكل – 5- يمثل

أ- أنسب كل منحنى بياني للتوتر المناسب مع التبرير .

ب - حدد قيمة التوتر E وأحسب شدة التيار الأعظمي E

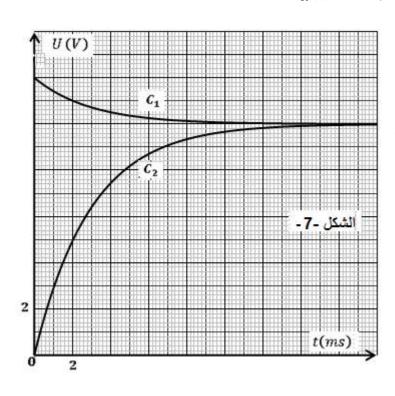
 $C_1 = 4\mu F$: أوجد بيانيا قيمة ثابت الزمن au ثم بيّن أن


4- أحسب القيمة الأعظمية للطاقة المخزنة في المكثفة المكافئة.

التمرين الرابع: (04,5 نقطة)

ننجز التركيب المبين في الشكل -6- والمكون من:

- E = 12V مولد مثالى للتوتر قوته المحركة الكهربائية
 - وشيعة مثالية معامل تحريضها (ذاتيتها) L.
 - r و $R=40\Omega$ و R=40
 - قاطعة للتيار الكهربائي K .



عند لحظة نختارها مبدءا للأزمنة (t=0) ، نغلق القاطعة وبواسطة نظام معلوماتي موصل بالدارة (t=0) ، نغلق الدارة) عند لحظة نختارها مبدءا للأزمنة (t=0) الممثلين للتوترين عند المدخلين t=0 و t=0 الممثلين التوترين عند المدخلين t=0 الممثلين التوترين عند المدخلين t=0 الممثلين التوترين عند المدخلين t=0 عند المدخلين المد

- . $U_{PN}(t)$ التوتر الذي يمثل التوتر $U_{R}(t)$ والمنحنى الذي يمثل التوتر -1
 - 2- حدد قيمة Ip ، شدة التيار الكهربائي في النظام الدائم .
 - r=8 . Ω هي Ω . الناقل الأومي هي Ω
- 4- باستعمال قانون جمع التوترات أثبت المعادلة التفاضلية التي يحققها التوتر الكهربائي $U_R(t)$.
 - . $U_R(t)=A\;(1-e^{-rac{t}{ au}})$: علما أن حل المعادلة التفاضلية هو من الشكل -5

أوجد عبارتي الثابتين A و au بدلالة المقادير المميزة للدارة .

- . حدد قيمة ثابت الزمن au للدارة
- 7- استنتج قيمة معامل التحريض L للوشيعة .
- $t=rac{ au}{2}$ الطاقة المخزنة في الوشيعة عند اللحظة -8

ثانوية حمدي شريف عبدالقادر – عشعاشة – تصحيح امتحان الفصل الأول لمادة العلوم الفيزيائية – السنة الثالثة شعبة (رياضيات)

التمرين الأول: 06 نقطة

- -1- <u>تركيب نواة النظير</u> 1- 56 n : ⁹⁹₄₃Tc
 - 2-1) <u>النواة الأكثر استقرارا مع التعليل.</u>

$$\begin{cases} \frac{E_{\ell}\binom{97}{43}Tc}{A} = 8,621 MeV/nucl\acute{e}on \\ \frac{E_{\ell}\binom{99}{43}Tc}{A} = 8,611 MeV/nucl\acute{e}on \end{cases}$$

النواة Tc أكثر استقرارا من النواة 97 Tc أكثر استقرارا من النواة $\frac{E_{\ell}(\frac{97}{43}Tc)}{43}>\frac{E_{\ell}(\frac{99}{43}Tc)}{2}$

3-أ- معادلة التفاعل النووي لإنتاج التكنتيوم 32Tc.

$$_{42}^{99}Mo \longrightarrow _{43}^{99}Tc + _{z}^{a}x$$

حسب قانوني صودي

$$\begin{cases} 99 = 99 + a \\ 42 = 43 + z \end{cases} \Rightarrow \begin{cases} a = 0 \\ z = -1 \end{cases} \Rightarrow {}^a_z x \Rightarrow {}^0_{-1} e$$

 $(\underline{0}e)$ نمط التفكك : β^- (الكترون $\underline{0}e$

 $_{42}^{99}Mo \rightarrow _{43}^{99}Tc + _{z}^{a}x$

ب- مخطط للطاقة وحساب الطاقة المتحررة $E_{
ho ih}$:

$$\begin{array}{c|c}
 & & & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\
\hline
 & & & & &$$

 $E_{\ell ib} = -[E_{\ell_1} + (m_p + m_e - m_n).C^2 - E_{\ell_2}]$

 $E_{\ell ib} = -[852,10 + (1,0073 + 0,00055 - 1,0087).931,5 - 852,53]$

 $E_{lib} = 737,96 \, MeV$

 $\frac{99}{43}Tc$ ایجاد λ ایجاد $\lambda = f(N_d)$ ایجاد $\lambda = \frac{99}{43}Tc$ ایجاد λ

$$\left\{egin{aligned} A(t) &= \lambda\,N(t) &= \lambda.\,N_0 - \lambda.\,N_d \dots \\ A(t) &= B + K.\,N_d \dots \end{aligned}
ight.$$
 بيانيا

$$\begin{cases} B = \lambda. N_0 = A_0 = 5.10^8 \text{ Bq} \\ \lambda = -K = tang\alpha \times \frac{\|j\|}{\|i\|} = 3,22.10^{-5} s^{-1} \end{cases}$$
بالمطابقة نجد:

 $oldsymbol{t}_{1/2} = oldsymbol{6h}$: $oldsymbol{t}_{1/2} = oldsymbol{6h}$:

 $t_{1/2} = \frac{\ell n2}{2} = 2, 15.10^4 s \approx 6 h$

 $t_0 = 0$ عند اللحظة N_0 قيمة اللحظة اللحظة عند

 $A_0 = \lambda. N_0 \Rightarrow N_0 = \frac{A_0}{\lambda} = 1.55. 10^{13} Noyeaux$

: t_1 قيمة (h) قيمة عديد بالساعة

$$\begin{aligned} A_1 &= A_0.\,e^{-\pmb{\lambda}\,t} \stackrel{1}{\longrightarrow} 0.60 A_0 &= A_0 e^{-\pmb{\lambda}t_1} \\ &\Rightarrow t_1 &= \frac{1}{\pmb{\lambda}} \ell n \frac{A_0}{A_1} = 4.4 \; h \end{aligned}$$

التمرين الثاني 06 نقط:

أ - أنجز جدو لا لتقدم التفاعل واستنتج التقدم الأعظمي للتفاعل .

فاعل	معادلة التفاعل $C_4H_8O_{2(\ell)}+HO_{(aq)}^- \longrightarrow C_2H_3O_{2(aq)}^- +R-OH_{(aq)}$						
الحالة	التقدم	$(mo\ell)$ کمیات المادة ب					
إبتدا	0	n_0				0	
انتقا	x	$n_0 - x$	$n_0 - x$		х	х	
نها	x_m	$n_0 - x_m$	$n_0 - x_m$		x_m	x_m	

التقدم الأعظمي للتفاعل:

 $n_0 - x_m = 0 \Longrightarrow x_m = n_0 = C_0 V_0 = 10^{-3} mo\ell$ ب- عبارة الناقلية النوعية للوسط النفاعلي :

x بدلالة $\sigma(t)$ بدلالة عبارة

$$\sigma(t) = A + Bx$$

$$\begin{cases}
A = \sigma_0 = 0.25 \text{ S. } m^{-1} \\
B = tang\alpha \times \frac{\|j\|}{\|i\|} \approx -160 \text{ S/ m. mol.}
\end{cases}$$

$$\Rightarrow \sigma(t) = 0.25 - 160 x \dots 2$$

د- سبب تناقص الناقلية النوعية في الوسط التفاعلي .

بمطابقة العلاقتين lacktriangledown و lacktriangledown : $\lambda_3-\lambda_2<0\Rightarrow\lambda_3<\lambda_2$

 $\underline{t_{\mathcal{W}}}$ مساب $\sigma_{\mathcal{W}}$ ثم استنتاج (1-2

 $\sigma_{v_2} = 0.25 - 160 \frac{x_m}{2}$

 $\Rightarrow \sigma_{\nu_2} = 0.17 \text{ S. } m^{-1} = 170 \text{ mS. } m^{-1}$

السنة الدراسية: 2016 - 2017

 $\Rightarrow t_{1/2} = 12 min$

2-1- حركية التفاعل:

: $\sigma(t)$ السرعة الحجمية للتفاعل v_V عبارتها بدلالة (أ

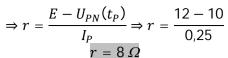
هي مقدار تغيرات تقدم التفاعل خلال الزمن في واحدة

 $v_V = \frac{1}{V_0} \frac{dx}{dt}$: eight like $v_V = \frac{1}{V_0} \frac{dx}{dt}$

 $v_V = -\frac{1}{0.016} \frac{d\sigma}{dt}$

ب- حساب v_V بالوحدة ($mol.m^{-3}.min^{-1}$) عند

اللحظتين : (t = 35min) و (t = 0)


 $\frac{d\sigma}{dt} = tang\alpha \times \frac{\|j\|}{\|i\|}$

 $\begin{cases} v_V(0) = 0.52 \ mo\ell \ .m^{-3} .min^{-1} \ v_V(35 min) = 0.083 mo\ell \ .m^{-3} .min^{-1} \end{cases}$

شرح تطور السرعة الحجمية للتفاعل.

 $v_V(0) > v_V(35 \text{min})$

سرعة التفاعل تتناقص ببسبب تناقص تراكيز المتفاعلات خلال الزمن .

i(t) المعادلة التفاضلية التي تحققها i(t)

$$\forall t \geq 0 : U_R(t) + U_r(t) + U_L(t) = E$$

$$\begin{cases} i(t) = \frac{U_R(t)}{R} \\ \frac{di}{dt} = \frac{1}{R} \frac{dU_R(t)}{dt} \end{cases} \Rightarrow \begin{cases} U_r(t) = r \frac{U_R(t)}{R} \\ U_L(t) = \frac{L}{R} \frac{dU_R(t)}{dt} \end{cases}$$

$$\Rightarrow U_R(t) + r \frac{U_R(t)}{R} + \frac{L}{R} \frac{dU_R(t)}{dt} = E$$

$$\Rightarrow \frac{dU_R(t)}{dt} + \frac{(r+R)}{L} U_R(t) = \frac{ER}{L}$$

5- حل المعادلة التفاضلية هو من الشكل:

$$U_R(t) = A \left(1 - e^{-\frac{t}{\tau}}\right)$$

auایجاد عبارتی الثابتین : A و au

$$\frac{dU_R(t)}{dt} = A \cdot \frac{t}{\tau} e^{-\frac{t}{\tau}}$$

$$A \cdot \frac{1}{\tau} e^{-\frac{t}{\tau}} + \frac{(r+R)}{L} A - \frac{(r+R)}{L} A e^{-\frac{t}{\tau}} = \frac{ER}{L}$$

$$\Rightarrow \begin{cases} (r+R)A = ER \\ \frac{1}{\tau} = \frac{(r+R)}{L} \end{cases} \Rightarrow \begin{cases} A = \frac{ER}{(r+R)} = RI_P \\ \tau = \frac{L}{(r+R)} \end{cases}$$

نحسب : باستعمال البيان c_2 نحسب الدارة باستعمال البيان الزمن au

 $U_R(\tau) = 0.63 U_R(\text{max}) = 6.3 V \Rightarrow \tau = 3ms$

7- قيمة معامل التحريض L للوشيعة:

$$\tau = \frac{L}{(r+R)} \Rightarrow L = \tau(R+r) \Rightarrow L = 144 \, mH$$

$$t = \frac{\tau}{2}$$
: المخزنة في الوشيعة عند : 8

$$E(L) = \frac{1}{2}Li^{2}(t) \Rightarrow E(L)|_{t=\frac{\tau}{2}} = \frac{1}{2}Li^{2}(\frac{\tau}{2})$$

$$t = \frac{\tau}{2} = 1.5ms \Rightarrow U_{R}(\frac{\tau}{2}) = 4V$$

$$\Rightarrow i\left(\frac{\tau}{2}\right) = 0, 1A$$

$$E(L)|_{t=\frac{\tau}{2}} = 0, 5.144.0, 01$$

$$\Rightarrow E(L)|_{t=\frac{\tau}{2}} = 0.72 \ mJ$$

3- أ- اسناد كل منحنى للتوتر المناسب مع التبرير .

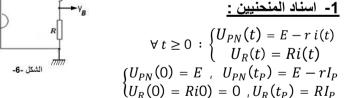
ب - قيمة التوتر E وحساب شدة التيار الكهربائي الأعظمي [: ا

$$\begin{cases} E = U_R(0) \\ I_0 = \frac{E}{R} = \frac{12}{3.10^3} = \end{cases} \Rightarrow \begin{cases} E = 12 V \\ I_0 = 4.10^{-3} A \end{cases}$$

$C_1 = 4\mu F$: نبیّان أن

نحسب ثابت الزمن بيانيا: باستعمال البيان ①

$$U_{R}(\tau) = 0.37E = 4.44 V \implies \tau = 4 ms$$


$$\tau = R C_{\acute{e}q} \implies C_{\acute{e}q} = \frac{\tau}{R} \implies C_{\acute{e}q} = \frac{4}{3} \mu F$$

$$\frac{1}{C_{1}} + \frac{1}{C_{2}} = \frac{1}{C_{\acute{e}q}} \implies \frac{1}{C_{1}} = \frac{1}{C_{\acute{e}q}} - \frac{1}{C_{2}} = \frac{1}{4} \implies C_{1} = 4 \mu F$$

4- حساب القيمة الأعظمية للطاقة المخزنة في المكثفة المكافئة:

$$E(C)_{max} = \frac{1}{2} C_{eq} E^2 = \frac{1}{2} \frac{c_1 \cdot c_2}{c_1 + c_2} E^2$$

 $E(C)_{max} = \frac{3}{8} \cdot 144 = 54 \,\mu J$

التمرين الرابع: (00. 4 نقطة)

 $U_R(t)$ لـ (C_2) ومنه المنحنى $U_{PN}(t)$ يوافق $U_{PN}(t)$ و المنحنى

<u>2- فيمه 1₂:</u>

$$\begin{cases} U_R(t_P) = RI_P \\ U_R(t_P) = 10 V \end{cases} \Rightarrow I_P = \frac{U_R(t_P)}{R}$$

$$I_P = \frac{10}{40} = 0.25 A$$

r=8 Ω هي هي المقاومة r للنَّاقُل الأومى هي r=8

التمرين الثالث: (4.00 نقطة)

$$E = ? \quad R = 3K\Omega \quad . \quad C_2 = 2\mu F \quad \int C_1 = ?$$

$$C_{\text{eq}} = \frac{c_1 \cdot c_2}{c_1 + c_2} : \text{ i. } C_{\text{eq}} = \frac{q_1}{c_1 + c_2} = \frac{q}{c_{\text{eq}}}$$

$$\begin{cases} q_1 = q_2 = q \\ U_1 + U_2 = \frac{q_1}{c_1} + \frac{q_2}{c_2} = \frac{q}{c_{\text{eq}}} \end{cases}$$

$$\Rightarrow \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{C_{\acute{e}g}} \Rightarrow C_{\acute{e}q} = \frac{C_1.C_2}{C_1 + C_2}$$

 $\frac{dU_2(t)}{dt} + \frac{1}{RC_{\theta n}}U_2(t) = \frac{E}{RC_2}$: 2(t) عادلة التفاضلية التي

قتون جمع التوترات
$$\forall t \geq 0 : U_2(t) + U_1(t) + U_R(t) = E$$

$$\begin{cases} U_R(t) = Ri = R\frac{dq}{dt} = RC_2 \frac{dU_2(t)}{dt} \\ U_1(t) = \frac{C_2}{C_{eq}}U_2 - U_2 \end{cases} \Rightarrow RC_2 \frac{dU_2(t)}{dt} + \frac{C_2}{C_{eq}}U_2 = E$$

$$\Rightarrow \frac{dU_2(t)}{dt} + \frac{1}{R C_{eq}} U_2(t) = \frac{E}{R C_2} \dots \dots \oplus$$

. $U_2(t)=A(1-e^{-lpha\,t})$: ب- حل هذه المعادلة على الشكل

RC عبارة كل من الثابتين A و \propto بدلالة المقادير المميزة للدارة

$$\frac{dU_2}{dt} = A \propto e^{-\propto t}$$

بالتعويض في 🛈 <u>:</u>

$$\Rightarrow A \propto e^{-\alpha t} + \frac{1}{R C_{eq}} A - \frac{1}{R C_{eq}} A e^{-\alpha t} = \frac{E}{R C_2}$$

$$\Rightarrow A e^{-\alpha t} \left(\alpha - \frac{1}{R C_{eq}} \right) = \frac{E}{R C_2} - \frac{1}{R C_{eq}} A$$

$$\begin{cases} \alpha - \frac{1}{R C_{eq}} = 0 \\ \frac{E}{R C_2} - \frac{1}{R C_{eq}} A \end{cases} \Rightarrow \begin{cases} \alpha = \frac{1}{R C_{eq}} = \frac{1}{\tau} \\ A = \frac{E \cdot C_{eq}}{C_2} = E \cdot \frac{C_1}{C_1 + C_2} \end{cases}$$

$$U_2(t) = E \cdot \frac{C_1}{C_1 + C_2} (1 - e^{-\alpha t})$$

q(t) عبارة شدة التيار الكهربائي i(t) وكذا شحنة المكثفة q(t) :

$$i(t) = \frac{dq(t)}{dt} = C_2 \frac{dU_2(t)}{dt} \Rightarrow i(t) = C_2 \cdot E \cdot \frac{C_1}{C_1 + C_2} \cdot \frac{1}{R C_{eq}} e^{-\alpha t}$$

$$\Rightarrow i(t) = \frac{E}{R}e^{-\frac{t}{\tau}} = I_0e^{-\frac{t}{\tau}} \qquad q(t) = C_{\acute{e}q}E(1 - e^{-\frac{t}{\tau}})$$