في مادة تكنولوجيا

: 3 تقني رياضي (هندسة مدنية)

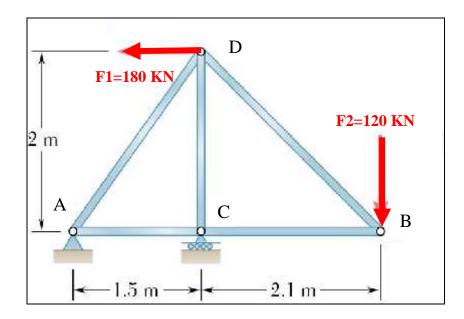
4:

I _ التقديم

نريد دراسة منشأ معدني يحتوي على مجموعة من العناصر من بينها : غماء ، عمود معدني و مدرج.

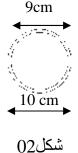
- II

(10)


أ: عرف الغماء

ب: أذكر العناصر المكونة للغماء.

ج: الشَّكَل الميكَانيكي للهيكل الثلاثي موضح في الشكل 01 حيث:


A: مسند مزدوج

: مسند بسيط : C

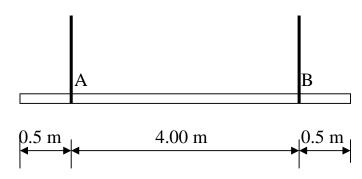
شكل 01

- 1. تأكد أن الهيكل المقترح محدد سكونيا.
- C أحسب ردود الفعل في المسندين A و C .
- 2. باستعمال الطريقة التحليلية (عزل العقد) أحسب الجهود الداخلية في قضبان الهيكل وعين طبيعتها.
 - 4. دون النتائج المحصل عليها في جدول.
 - 5. تحقق من شرط المقاومة إذا كانت القضبان ذات مقطع دائري مفرغ (شكل 02)علما ان $\overline{\sigma} = 16 \text{ KN/cm}^2$

الثانية:

الهيكل الثلاثي يرتكز على أعمدة معدنية.

1. عرف العمود و حدد تصنيف الأعمدة حسب المادة المكونة أو لا ثم حسب وضعيتها ثانيا.


2. يتعرض العمود إلى قوة انضغاط N=72 KN مقطعه على شكل مجنب IPE 100.

 $\overline{\sigma}=16~{
m KN/cm^2}$ - تحقق من مقاومة العمود علما أن الإجهاد المسموح به

و قيمة التقلص $E=2x10^6~kg/cm^2$ علما أن $\Delta L=-1.747~mm$

3. لشحن الأعمدة المعدنية مسبقة الصنع من المصنع إلى ورشة الإنجاز استعملنا رافعة وحبلين:

. N_{B} و N_{A} أحسب قيمة الجهد في كلا الحبلين N_{A} و N_{B} .

(04)

نريد إنجاز مدرج مستقيم ذو قلبتين متوازيتين للانتقال من الطابق الأرضي إلى الطابق العلوي الذي ارتفاعه H.

. h=17.5 cm و القائمة n=20

• أحسب ارتفاع الطابق H.

• حدد عرض الدرجة (النائمة) g.

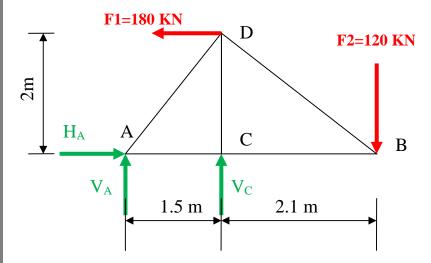
IPE

IPE	h (mm)	b (mm)	a (mm)	e (mm)	$W_{xx} = \frac{I_{xx}}{V}$	S (cm²)
100	100	55	4.1	5.7	34.2	10.3
120	120	64	4.4	6.3	53	13.2
140	140	73	4.7	6.9	77.3	16.4
160	160	82	5.0	7.4	109	20.1

(التصحيح النموذجي مع سلم التنقيط

: 3 تقني رياضي (هندسة مدنية)

(10)


(01)

هو مجموعة العناصر التي تشمل الجزء العلوي المعد لتغطية البنايات وتتمثل في التغطية والهيكل الثلاثي و عناصره، و يتعلق شكله بالشكل الهندسي للمبنى، نوعية الغطاء و طبيعة الإضاءة و التهوية.

(01)

الهيكل الثلاثي ، حاملات الروافد ، دعائم السقف ، الشرائح و الاغطية.

عيكل الثلاثي

b = 5 \Rightarrow $b \stackrel{?}{=} 2n - 3$; $5 = 2 \times 4 - 3$

= 4 \int 5 = 8 -

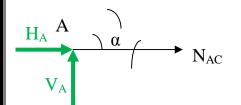
 $5=5 \rightarrow 1$ النظام محدد سکو نیا 01

- 2

- 1

 $\Sigma F / x = 0 \Rightarrow H_A - F_1 = 0 \Rightarrow H_A = 180 \ KN$

 $\Sigma F / y = 0 \Rightarrow V_A + V_C - F_2 = 0 \Rightarrow V_A + V_C = 120 \text{ KN}$


 $\Sigma M / A = 0 \Rightarrow -V_C \times 1.5 - F_1 \times 2 + F_2 \times 3.6 = 0 \Rightarrow V_C = 48 \text{ KN}$

 $V_A + V_C = 1N \implies V_A = 72 \ KN$

 $H_A = 180 \ KN \ ; V_A = 72 \ KN \ ; V_C = 48 \ KN$

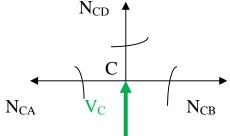
0.5 0.5 0.5

أ - حساب الجهود الداخلية في القضبان العقدة" A"

$$AD = \sqrt{2^2 + (1.5)^2} \Rightarrow AD = 2.5 m$$

$$\sin \Gamma = \frac{2}{2.5} \Rightarrow \sin \Gamma = 0.8$$

$$\cos r = \frac{1.5}{2.5} \Rightarrow \cos r = 0.6$$

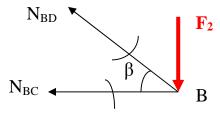

$$\Sigma F / x = 0 \Rightarrow H_A + N_{AC} + N_{AD} \cos r = 0.....(1)$$

$$\Sigma F / y = 0 \Rightarrow V_A + N_{AD} \sin \Gamma = 0...$$
 ...(2)

0.5

$$N_{AD} = -90 \ KN$$
 | limited properties | 0.5

$$N_{AC} = -126 \ KN$$
 | juicing 0.5



 $\Sigma F / x = 0 \Rightarrow N_{CA} + N_{CB} = 0.....(1)$

$$N_{CB} = -126 \ KN$$
 liضغاط 0.5

العقدة" B"

العقدة" C"

$$BD = \sqrt{2^2 + (2.1)^2} \implies BD = 2.9m$$

$$\sin S = \frac{2}{2.9} \implies \sin \Gamma = 0.6896$$

$$\cos S = \frac{2.1}{2.9} \implies \cos \Gamma = 0.7241$$
0.5

$$\Sigma F / x = 0 \Rightarrow N_{BC} - N_{BD} \cos S = 0$$

01 - 4

طبيعته	الجهد (KN)	القضيب	العقدة	
إنضغاط	90	AD	٨	
إنضغاط	126	AC	A	
إنضغاط	126	СВ	C	
إنضغاط	48	CD		
شد	174	BD	В	

شرط المقاومة محقق لأن

$$\dagger = 11.66 \ KN \ / \ cm^2 \le \dagger = 16 \ KN \ / \ cm^2$$

(06)

الثانية:

1 _ تعريف العمود 10

الأعمدة عبارة عن عناصر شاقولية تمثل جزءا من الهيكل الحامل ، تتميز بثلاثة أبعاد منهما بعدان متقاربان صغيران في المستوى الأفقي يمثلان طول و عرض المقطع العرضي للعمود، و بعد ثالث كبير في المستوى الشاقولي يمثل الإرتفاع.

01:

- أعمدة من الخرسانة المسلحة.
 - أعمدة فو لاذية.
 - أعمدة خشبية.
 - الوضعية: 01
 - أعمدة جانبية
 - أعمدة داخلية
 - أعمدة زاوبة

-3

$$\dagger = \frac{N}{S}$$

$$S = 10 cm^2$$

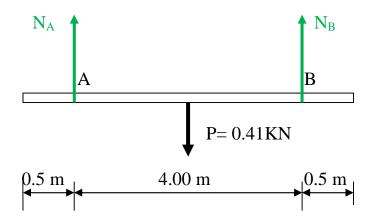
$$\uparrow = \frac{72}{10.3} \Rightarrow \uparrow = 6.99 \text{ KN } / \text{cm}^2$$

شرط المقاومة محقق لأن

$$\dagger = \frac{N}{S}$$

$$\dagger = E \vee$$

$$\uparrow = \frac{N}{S}$$


$$\uparrow = E.V$$

$$\frac{N}{S} = E.V \implies \frac{N}{S} = E.\frac{\Delta L}{L}$$

$$L = \frac{S \times E \times \Delta L}{N} \Rightarrow L = \frac{10.3 \times 2 \times 10^{6} \times 0.1747}{72 \times 100}$$

$$L = 499.83 \, cm \implies L = 5.00 \, m$$

5_ حساب الجهد في الحبلين

$$\Sigma F / y = 0 \Rightarrow N_A + N_B = 0..................(1)$$

 $\Sigma M / A = 0 \Rightarrow -N_B \times 4 + P \times 2 = 0........................(2)$
 $N_B = 0.205 \ KN$ **01**
 $N_A = 0.205 \ KN$

(04)

 $H = n \times h \Rightarrow H = 20 \times 17.5$

 $H = 350 \ cm \Rightarrow H = 3.50 \ m \qquad \mathbf{02}$

g () - 2

g + 2h = 64 cm $g = 64 - (2 \times 17.5) \Rightarrow g = 29 cm$ **02**