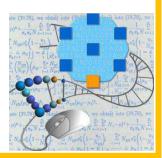

Domaine SNV: Biologie, Agronomie, Science Alimentaire, Ecologie

web.facebook.com/DomaineSNV

Bioinformatique

Bioinformatique Licence « Toxicologie »

Cours 1


Melle DAHMANI C.A

web.facebook.com/ DomaineSNV

Domaine SNV: Biologie, Agronomie, Science Alimentaire, Ecologie

Introduction générale sur la

bioinformatique

Introduction

<u>La bioinformatique</u>: Traitement des informations biologiques par des méthodes informatiques et/ou mathématiques.

Discipline fondée sur des acquis de :

La biologie, des mathématiques et de l'informatique.

Introduction

La bioinformatique constitue une branche nouvelle de la biologie:

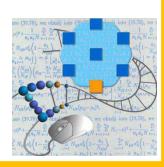
- Approche *in silico*, complète les approches classiques de la biologie:
- ☐ *in situ* (dans le milieu naturel),
- ☐ in vivo (dans l'organisme vivant) et
- ☐ *in vitro* (en éprouvette).

Introduction

☐ Plusieurs domaines d'applications:

La génétique des populations

L'environnement (toxicologie...)


La biologie moléculaire

La biologie évolutive

Historique rapide de la Bioinformatique

Historique rapide de la bioinformatique

• Années 70 : Premières comparaisons de séquences.

• Années 80 : Premières méthodes de prédiction.

Premières méthodes d'alignement.

Banques de données.

Méthodes de recherche dans les banques

de données (Fasta et Blast).

• Années 90 : Perfectionnement des méthodes.

Approches intégrées.

• Aujourd'hui : Génomique (structurale: séquençage)

Comment séquence-t-on un génome ?

Lab technician working with sequencing machines Courtesy of Celera Genomics

Une réponse rapide : en morceaux !

Room filled with sequencing machines Courtesy of Celera Genomics

Le Projet Génome Humain

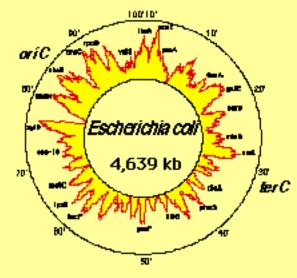
- Entrepris en 1990
- Mission :
- <u>Séquençage</u> complet de l'ADN du <u>génome</u> <u>humain</u>.
- Achèvement annoncé en avril 2003.

Le Projet Génome Humain: Objectifs

 Séquencer l'ensemble du génome humain (3 milliards de pb)

■ Identifier tous les gènes dans cette grande quantité de données \rightarrow (compte préliminaire = ≈ 25000 gènes)


Le Projet Génome Humain: Résultats


- \triangleright Chromosomes 22 et 21 \rightarrow avant 2000
- \rightarrow Chromosome 20 \rightarrow 2001
- > Chromosome 14 → 2003 (Publié)
- ➤ Source de l'ADN séquencé → provient de plusieurs donneurs anonymes, recrutés aux Etats-Unis.

Fragment d'une séquence d'ADN linéaire

AGTCCGCGAATACAGGCTCGGT

Représentation de génomes bactériens séquencés

Applications de la bioinformatique à la toxicologie

La démarche de la bioinformatique

ADN — Protéine

AGTCCGCGAATACAGGCTCGGT

SPRIQAR

Aujourd'hui...

Aujourd'hui...

LES MÉTHODES IN SILICO

- Ces méthodes utilisent la modélisation mathématique de données toxicologiques obtenues *in vitro* et *in vivo*.
- Elles peuvent être purement statistiques et/ou utiliser les connaissances d'experts toxicologues qui associent les fonctions et les motifs structuraux des molécules chimiques à des réponses toxiques spécifiques.
- Par exemple, les QSAR (*Quantitative Structure Activity Relationships*) visent à modéliser la structure chimique d'un xénobiotique et son activité toxicologique.

LES MÉTHODES IN SILICO

- Ces approches pourraient réduire jusqu'à 70 % le recours aux tests *in vitro* sur l'animal.
- Les modèles PBPK (*Physiologically-based Pharmacocinetic*) sont des modèles toxico-cinétiques fondés sur les connaissances fondamentales de la physiologie humaine ou animale.
- L'association entre les approches QSAR et PBPK devrait permettre de prédire une toxicité systémique sans avoir recours à l'expérimentation animale.

LES MÉTHODES IN SILICO

- L'introduction de ces méthodes dans la démarche toxicologique moderne, limitera une expérimentation animale lourde, coûteuse, et qui n'est pas forcément représentative des situations humaines.
- L'intérêt de cette approche serait également d'y introduire des facteurs de susceptibilité individuelle pour des situations spécifiques (asthmatiques, cardiaques, obèses, femmes enceintes, enfants, personnes âgées...).

La bioinformatique, la toxicologie et la génétique

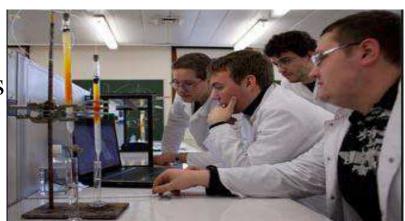
- Dans de nombreux domaines de la biologie (en pharmacologie, en nutrition et en toxicologie):
- Programmes scientifiques sont en cours de développement afin de rechercher si les variations génétiques sont l'explication de l'hétérogénéité de réponse à:
- un traitement médical,
- à un régime alimentaire ou
- à l'exposition à un toxique environnemental...

• Il est vraisemblable que les données concernant la susceptibilité individuelle ne se limiteront pas longtemps à un ou quelques gènes, il sera nécessaire de prendre en compte un nombre important de gènes.

• Ceci demande la constitution d'équipe pluridisciplinaire en toxicologie regroupant:

Les toxicologues

• Il est vraisemblable que les données concernant la susceptibilité individuelle ne se limiteront pas longtemps à un ou quelques gènes et il sera nécessaire de prendre en compte un nombre important de gènes.


• Ceci demande la constitution d'équipe pluridisciplinaire en toxicologie regroupant:

• Les généticiens

- Il est vraisemblable que les données concernant la susceptibilité individuelle ne se limiteront pas longtemps à un ou quelques gènes et il sera nécessaire de prendre en compte un nombre important de gènes.
- Ceci demande la constitution d'équipe pluridisciplinaire en toxicologie regroupant:

Les bio-informaticiens

Merci