Département de Mathématiques Faculté des Sciences Université Aboubekr Belkaid-Tlemcen

Année Universitaire 2017/2018 Liste 2 de TD d'Algèbre MI Chapitre 1: Partie2: Raisonnement

Exercice 1. 1- Montrer par contraposition que si le reste de la division de $x^2 + y^2 + z^2$ par 2^n est -1 alors x, y et z sont, soit tous les trois impairs, soit deux sont pairs.

2- Reprendre la démonstartion précédente en utilisant un raisonnement par l'absurde.

Solution: On veut montrer que :

SI pour tous x, y, z, et pour tout n, $x^2 + y^2 + z^2 \equiv -1$ [2ⁿ] ALORS x, y, z sont tous imapirs ou deux sont pairs.

La phrase après ALORS est la suivante: [(x impair) ET (y impair) ET (z impair)] OU [(x pair) ET (y pair)]. (On peut penser à prendre z impair dans la deuxième assertion aussi, c.à.d. dans [(x pair) ET (y pair)])

Remarque: Dans [(x pair) ET (y pair)], on peut remplacer (x et y) par (x et z) ou (y et z) et ceci du fait qu'il y a une symétrie par rapport à x, y et z dans l'expression: $x^2 + y^2 + z^2 \equiv -1$ $[2^n]$. Donc un choix suffit à cause de la symétrie.

Par contraposition: Montrons que SI [(x pair) OU (y pair) OU (z pair)]ET [(x impair) OU (y impair)] ALORS il existe au moins x, y, z, et n tel que $x^2 + y^2 + z^2$ est non congru à -1 $[2^n]$.

On part de: [(x pair) OU (y pair) OU (z pair)] **ET** [(x impair) OU (y impair)] **VRAI**, donc on part de : [(x pair) OU (y pair) OU (z pair)] **VRAI ET** [(x impair) OU (y impair)] **VRAI**.

Pensons au OU exclusif!

On remarque que "z pair" figure dans [(x pair) OU (y pair) OU (z pair)] et aussi dans [(x impair) OU (y impair)]. (Voir la phrase écrite entre parenthèses à la $5^{i\hat{c}me}$ et $6^{i\hat{c}me}$ lignes). Donc Prendre z pair (sans penser à la parité de x et y,d'ou le OU exclusif) nous donne [(x pair) OU (y pair) OU (z pair)] **VRAI ET** [(x impair) OU (y impair)] **VRAI**.

Maintenant cherchons au moins un x, un y et un n, avec un z pair, de telle manière que $x^2+y^2+z^2$ ne soit pas congru à -1 $[2^n]$.

On peut choisir:

ximpair, ypair, zpair et n=0, $x^2+y^2+z^2=4(k^2+k+k'^2+k''^2)+1\equiv 0$ [1] ou

x pair, y impair, z pair et n = 0, $x^2 + y^2 + z^2 = 4(k^2 + k'^2 + k' + k''^2) + 1 \equiv 0$ [1] ou

x impair, y impair, z pair et n=1, $x^2+y^2+z^2=4(k^2+k+k'^2+k'+k''^2)+2\equiv 0$ [2]. Les deux premiers choix sont triviaux donc pas vraiment importants. Le troisième est le bon choix. D'ou la contraposée.

AUTRE METHODE pour la contraposée:

Montrons que **SI** [(x pair) OU (y pair) OU (z pair)] ET [(x impair) OU (y impair)] **ALORS** il existe au moins x, y, z, et n tel que $x^2 + y^2 + z^2$ est non congru à -1 [2^n].

Or les assertions [(x pair) ET (x impair)] et [(y pair) ET (y impair)] sont FAUSSES, donc il reste :

Puisque [(x pair) ET (x impair)] et [(y pair) ET (y impair)] sont FAUSSES, alors supposons (x impair) et (y impair).

Dans ce cas il reste: $[(z \text{ pair}) ET \ (x \text{ impair})] OU \ [(z \text{ pair}) ET \ (y \text{ impair})].$ <u>En conclusion:</u> pour x impair, y impair, z pair et n = 1, $x^2 + y^2 + z^2 = 4(k^2 + k + k'^2 + k' + k''^2) + 2 \equiv 0$ [2]. D'ou la contraposée.

Par l'absurde:

On veut montrer par l'absurde que :

SI pour tous x, y, z, et pour tout $n, x^2 + y^2 + z^2 \equiv -1$ [2ⁿ] ALORS x, y, z sont tous imapirs ou deux sont pairs.

Dans ce cas supposons que toute l'implication ci-dessus est fausse, c.à.d, on a: [pour tous x, y, z et pour tout $n, x^2 + y^2 + z^2 \equiv -1$ [2^n] ET [$(x \ pair) \ OU \ (y \ pair) \ OU \ (z \ pair)$] ET [$(x \ impair) \ OU \ (y \ impair)$]].

On part de:

 $x^2 + y^2 + z^2 \equiv -1$ [2ⁿ] VRAI pour tous x, y, z et pour tout n et [[($x \ pair$) $OU \ (y \ pair$) $OU \ (z \ pair$)] ET [($x \ impair$) $OU \ (y \ impair$)]] VRAI. Maintenant il faut faire un raisonnement et trouver une contradiction.

Comme $[x^2 + y^2 + z^2 \equiv -1 \ [2^n]]$ est VRAI pour tous x, y, z et pour tout n, alors ça sera vrai pour $x=1,\,y=1$ et n=1. Bien sûre, pour x = 1 et y = 1, $[(x \ pair) \ OU \ (y \ pair) \ OU \ (z \ pair)]$ $ET \ [(x \ impair) \ OU \ (y \ impair)]]$ est VRAI à condition que z soit pair. En remplaçant x=1, y=1 et n=1dans $x^2 + y^2 + z^2 \equiv -1$ [2], on trouve $2 + z^2 \equiv -1$ [2], soit $z^2 \equiv -1$ [2], soit $z^$ impair, donc contardiction car z est pair.

Exercice2. Soit n un entier naturel. On se donne n+1 réels, $x_0, x_1, ..., x_n$ de [0,1] vérifiant: $0 \le x_0 \le x_1 \le ... \le x_n \le 1$. On veut démonter par l'absurde l'assertion P suivante:

P: Il y a deux de ces réels qui sont distants de moins de 1/n.

- 1- Ecrire à l'aide de quantificateurs et des valeurs $x_i x_{i-1}$ une formule logique équivalente à P.
- 2- Ecrire la négation de cette formule logique.
- 3- Rédiger une démonstartion par l'absurde de P.

Solution: 1) Selon l'énoncé on a, en supposant que i < j:

$$\exists i = 1, ..., n; \ \exists j = 1, ..., n \ \text{tel que } |x_j - x_i| = x_j - x_i \le \frac{1}{n}.$$

Puisqu'il existe deux nombres x_i et x_j qui sont distants de moins de $\frac{1}{n}$ alors certainement il existe deux nombres consécutifs x_i et x_{i-1} qui sont distants de moins de $\frac{1}{2}$. Donc on peut écrire la formule logique équivalente à P comme suit:

$$\exists i = 1, ..., n \text{ tel que } (x_i - x_{i-1}) \le \frac{1}{n}.$$

- 2) La négation est: $\forall i = 1, ..., n; (x_i x_{i-1}) > \frac{1}{n}$.
- 3) Par l'absurde on suppose que: $\exists i = 1,...,n$ tel que $(x_i x_{i-1}) \leq \frac{1}{n}$ est fause. Donc on suppose que $\forall i = 1, ..., n; (x_i - x_{i-1}) > \frac{1}{n}$ est vraie. Puisque $(x_i - x_{i-1}) > \frac{1}{n}$ est vraie pour toutes les valeurs de i dans l'ensemble $\{1, 2, ..., n\}$

 $(x_n - x_{n-1}) > \frac{1}{n}, (x_{n-1} - x_{n-2}) > \frac{1}{n}, (x_{n-2} - x_{n-3}) > \frac{1}{n}, \dots \text{et } (x_1 - x_0) > \frac{1}{n},$

$$(x_n - x_{n-1}) > \frac{1}{n}, (x_{n-1} - x_{n-2}) > \frac{1}{n}, (x_{n-2} - x_{n-3}) > \frac{1}{n}, \dots \text{et } (x_1 - x_0) > \frac{1}{n}$$

d'où:

$$(x_n - x_0) = (x_n - x_{n-1}) + (x_{n-1} - x_{n-2}) + \dots + (x_1 - x_0) > n \frac{1}{n}.$$

Donc $x_n - x_0 > 1$, ce qui est absurde.

Exercice3. Démontrer par récurrence que: $\forall n \in \mathbb{N} - \{0, 1, 2, 3\}, n^2 \leq 2^n$.

Solution: Pour n=4 ona $4^2 \le 2^4$ soit $16 \le 16$ ce qui est vrai. Fixons maintenant n dans $\mathbb{N} - \{0,1,2,3\}$ et supposons que $n^2 \le 2^n$. Montrons alors que pour ce n fixé on a $(n+1)^2 \le 2^{n+1}$. $(n+1)^2 = n^2 + 2n + 1 \le 2^n + 2n + 1$. Montrons maintenant que $2n + 1 \le 2^n$ pour n and n and n are n are n and n are n are n and n are n and n are n are n and n are n are n and n are n and n are n are n and n are n are n and n are n and n are n are n are n and n are n are n are n and n are n are n and n are n are n are n are n are n are n and n are n are n are n are n are n and n are n and n are n are

 $(n+1)^2 = n^2 + 2n + 1 \le 2^n + 2n + 1$. Montrons maintenant que $2n+1 \le 2^n$ pour tout $n \in \mathbb{N} - \{0, 1, 2, 3\}$. Pour n = 4 on a $9 \le 2^4$ soit $9 \le 16$ ce qui est vrai. Fixons n dans $\mathbb{N} - \{0, 1, 2, 3\}$ et supposons que $2n + 1 \le 2^n$ et montrons que pour ce n fixé on a $2(n+1)+1 \le 2^{n+1}$. On a bien $2(n+1)+1 = 2n+1+2 \le 2^n+2 \le 2^n+2^n$. Donc $(n+1)^2 \le 2^n + 2^n$ soit $(n+1)^2 \le 2^{n+1}$.