Université Aboubekr BELKAID - Tlemcen	A.U 2017/2018 - M.I 1ère année
Faculté des Sciences - Département de Mathématiques	Analyse 1 - Fiche de T.D n°2

Exercice 1: Soit $a \in \mathbb{R}$ un réel fixé. On définit la suite rélle $(u_n)_{n \in \mathbb{N}}$ par :

$$\begin{cases} u_0 = a \\ u_{n+1} = 2 - \frac{8}{9u_n}, \ \forall n \in \mathbb{N}. \end{cases}$$

- 1. En calculant u_1, u_2 et u_3 , remarquez que, pour certaines valeurs de a, cette suite n'est pas définie pour tout $n \in \mathbb{N}$. On se propose d'examiner le cas général.
- 2. Posons $w_n = \frac{6u_n 8}{3u_n 2}$. Montrez que la suite $(w_n)_{n \in \mathbb{N}}$ est géométrique. Exprimez à l'aide de n et w_0 son terme général.
- 3. En déduire l'expression du terme général u_n en fonction de n et a.
- 4. Retour à la première question. Déterminez les valeurs de a pour lesquelles la suite (u_n) n'est définie que pour un nombre fini de termes. Lesquels ?

Exercice 2: Calculez, si elles existent, les limites suivantes :

$$\lim_{n \to +\infty} \frac{3^n - (-2)^n}{3^n + (-2)^n} \quad , \quad \lim_{n \to +\infty} \frac{n - \sqrt{n^2 + 1}}{n + \sqrt{n^2 - 1}}.$$

Dans l'affirmative, donnez-en une démonstration en utilisant la définition de la limite d'une suite.

Exercice 3: Soit $a \in \mathbb{R}$ tel que 0 < |a| < 1. On définit la suite (u_n) par :

$$\begin{cases} u_0 = a \\ u_{n+1} = \frac{u_n}{2 - u_n}, \ \forall n \in \mathbb{N}. \end{cases}$$

Montrez, par récurrence, que u_n est bien défini pour tout entier n et que $|u_n| < 1$. Montrez ensuite que la suite $(|u_n|)$ est décroissante. En majorant convenablement $\frac{|u_{n+1}|}{|u_n|}$, montrez que la suite $(|u_n|)$ converge vers 0. Conclure pour la convergence de (u_n) . Aurait-on pu obtenir cette dernière conclusion en travail-lant directement sur (u_n) ? **Exercice 4:** Soient a, b deux réels tels que 0 < a < b. On pose

$$\begin{cases} u_0 = a , v_0 = b \\ u_{n+1} = \sqrt{u_n v_n} , v_{n+1} = \frac{u_n + v_n}{2} \quad \forall n \in \mathbb{N}. \end{cases}$$

- 1. Établir que $2\sqrt{ab} \le a + b$.
- 2. Montrez que les suites (u_n) et (v_n) sont adjacentes. (Indication: on commencera par montrer que $u_n \leq v_n$). Leur limite commune s'appelle la moyenne arithmético-géométrique de a et b, notée M(a,b) (On ne demande pas de la déterminer!).

Exercice 5: Soit (a_k) une suite réelle telle que $\forall k \in \mathbb{N}$ $a_k \in \{-1, +1\}$. On pose pour tout $n \geq 1$

 $u_n = \frac{a_1}{2} + \frac{a_2}{2^2} + \dots + \frac{a_n}{2^n}.$

Montrez que la suite (u_n) est convergente dans \mathbb{R} en montrant qu'elle est de Cauchy. Comment peut-on modifier l'ensemble $\{-1, +1\}$ et conserver le résultat précédent.