Université Aboubekr BELKAID - Tlemcen	A.U 2017/2018 - M.I 1ère année
Faculté des Sciences - Département de Mathématiques	Analyse 1 - Fiche de T.D n°3

Exercice 1: Soit a un paramètre réel. On donne les deux fonctions réelles suivantes :

$$f(x) = \sqrt{a^2 - |x| + x^2}$$
 , $g(x) = \ln\left(\frac{1 - ax}{1 + ax}\right)$

Déterminer pour chacune, et suivant les valeurs de a, le domaine de définition, puis étudier sa parité.

Exercice 2: Montrer que la fonction f, définie par $f(x) = \frac{x}{1+|x|}$, est une bijection de \mathbb{R} sur]-1,1[strictement croissante, et ce en utilisant uniquement les définitions de base.

Exercice 3: Soit $f: \mathbb{R} \to \mathbb{R}^*$ une fonction telle que

$$\forall x \in \mathbb{R}, \qquad f(x) = f(x-1)f(x+1).$$

Montrer que f est périodique. Vérifier que les fonctions $f_1(x) = e^{\cos \frac{\pi x}{3}}$ et $f_2(x) = e^{\sin \frac{\pi x}{3}}$ sont des solutions de l'équation précédente. Essayer d'en construire une autre.

Exercice 4: Soient $a, b, c \in \mathbb{R}_+^*$ des paramètres. Calculer les limites suivantes .

$$\lim_{x \to a+} \frac{\sqrt{x} - \sqrt{a} - \sqrt{x-a}}{\sqrt{x^2 - a^2}} \qquad , \qquad \lim_{x \to 0+} \frac{x}{b} \left[\frac{c}{x} \right]$$

<u>Exercice 5</u>: Montrer que les fonctions suivantes sont continues sur leurs domaines de définition respectifs

$$f(x) = \frac{x^3 + 2x + 3}{x^3 + 1}$$
 , $g(x) = \frac{(1+x)^n - 1}{x}$

Etudier l'existence d'un prolongement par continuité à tout \mathbb{R} .

Exercice 6: Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction continue telle que f(0)>0. On suppose que

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a < 1.$$

Montrer alors qu'il existe $x_0 \in [0, +\infty[$ tel que $f(x_0) = x_0$.